

EXHIBIT C

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 1 of 90

111111 111

(12) United States Patent
Klein

(54) DISTRIBUTED COMPUTER
ARCHITECTURE AND PROCESS FOR
VIRTUAL COPYING

(76) Inventor: Laurence C. Klein, 1010 Wayne Ave.,
Silver Spring, MD (US) 20910

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/438,300

(22) Filed: Nov. 12, 1999

Related U.S. Application Data
(60) Provisional application No. 60/108,798, filed on Nov. 13,

1998.

(51) Int. Cl? .. G06K 15/00
(52) U.S. Cl. .. 358/1.15; 358/1.1
(58) Field of Search 358/1.1, 1.6, 1.13,

358/1.15, 1.16, 402, 403, 407, 425; 710/8,
14, 15,33, 62, 63, 64, 65, 72,73

(56) References Cited

U.S. PATENT DOCUMENTS

5,666,495 A * 9/1997 Yeh 710/303

* cited by examiner

US006771381Bl

(10) Patent No.:
(45) Date of Patent:

US 6, 771,381 B1
Aug. 3, 2004

Primary Examiner-Arthur G. Evans
(74) Attorney, Agent, or Firm--Irah H. Donner, Esq.;
Wilmer, Cutter, Pickering Hale and Dorr LLP

(57) ABSTRACT

The purpose of the Virtual Copier invention ("VC") is to
enable a typical PC user to add electronic paper processing
to their existing business process. VC is an extension of the
concept we understand as copying. In its simplest form it
extends the notion of copying from a process that involves
paper going through a conventional copier device, to a
process that involves paper being scanned from a device at
one location and copied to a device at another location. In its
more sophisticated form, VC can copy paper from a device
at one location directly into a business application residing
on a network or on the Internet, or visa versa. The VC
invention is software that manages paper so that it can be
electronically and seamlessly copied in and out of devices
and business applications (such as Microsoft Office,
Microsoft Exchange, Lotus Notes) with an optional single­
step Go operation. The VC software can reside on a PC,
LAN/WAN server, digital device (such as a digital copier),
or on a web server to be accessed over the Internet.

15 Claims, 44 Drawing Sheets

VISUAL INTERFACE llO (5-10%) (CORBANBX/OCX/POWER BUILDER/ DELPHI) I
WINDOWS MANAGER (MFC) l -108

OBJECT MANAGER I 106

{ m

•WINDOWS •WINDOWS •WINDOWS
LEVEL3 REPRESENTATION REPRESENTATION REPRESENTATION

VISUAL 120 •WINDOWS •WINDOWS •WINDOWS

- CLASSES LEVEL 2 ERROR MANAGER ERROR MANAGER ERROR MANAGER
•BRIDGE •BRIDGE •BRIDGE

118 • SUPPLEMENTARY • SUPPLEMENTARY • SUPPLEMENTARY
LEVELl DIALOGS DIALOGS DIALOGS

104

{ 116

•CONSISTENT • CONSISTENT • CONSISTENT
LEVEL3 OBJECT INTERFACE OBJECT INTERFACE OBJECT INTERFACE

Ctt 114 •BRIDGE •BRIDGE •BRIDGE

- CLASSES LEVEL 2 • ENGINE FILL -IN • ENGINE FILL- IN • ENGINE FILL- IN

112 • PROTECTION • PROTECTION • PROTECTION
LEVELl • ERROR MANAGER • ERROR MANAGER • ERROR MANAGER

102

• ADMINISTRATION • ADMINISTRATION • ADMINISTRATION

_ TECHNOLOGY

I SCAN II IMAGE CLEANUP II OCR I CATEGORIES
100

UNDERLYING KOFAX, lCIONICS, SEQUOIA, TIS, XEROX, CAERE,
ENGINES SEAPORT, TWAIN CLEAR IMAGE, CALERA, NESTOR,

PIXEL TRANSLATIONS SEAPORT PRIME RECOGNITION,
UGATURE, MITEK

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 2 of 90

U.S. Patent Aug. 3, 2004 Sheet 1 of 44 US 6, 771,381 B1

HIGH-LEVEL DEVELOPER (VB, JAVA, DELPHI, ETC.) r-- 4

COMPUTER ARCHITECTURE 2

CORE TECHNOLOGY (ENGINES) I--6

FIG. 1

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 3 of 90

U.S. Patent Aug. 3, 2004 Sheet 2 of 44 US 6, 771,381 B1

COMPONENT INTERFACE r--.- 8

COMPONENT FACTORY r-- 10

j

'C'-LEVEL API ---- 12

FIG. 2

COMPONENT INTERFACE 8

OBJECT MANAGER 14

000

16 18 20

FIG. 3

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 4 of 90

U.S. Patent Aug. 3, 2004 Sheet 3 of 44

OBJECT

LAYER 3 -ENGINE FUNCTIONS

FIG. 4 LAYER 2 -ENGINE CONFIGURATION

LAYER 1 -ENGINE MANAGEMENT

t
ORGINAL 'C'- LEVEL API

OBJECT MANAGER

FIG. 5
000

16 18 20

OBJECT MANAGER

I
ENGINE OBJECT COMPONENT

LAYER 3 -ENGINE FUNCTIONS

FIG. 6 LAYER 2 -ENGINE CONFIGURATION

LAYER 1 -ENGINE MANAGEMENT

US 6, 771,381 B1

............._
16,18,20

22 ---- 24

-- 26

............._
12

14

r--- 14

r--- 16,18,20

22 ----24 --26

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 5 of 90

U.S. Patent Aug. 3, 2004 Sheet 4 of 44 US 6, 771,381 B1

IEngineManagement
Inteiface

Arguments Description

ActivateEngine BOOL Activate Activates or deactivates an engine. This
interface element will cause an engine to
load itself to or unload itself from memory.

IsEngineActivated Determine whether the engine has been
successfully loaded into memory.

FIG. 7

IEngineManagement
Interrace

Arguments Description

SetSetting DWORD Setting Sets the setting Setting to a value of Value.
VARIANT Value the Setting argument 1s a unique number

that represents a specific setting type. The
Value argument is a union argument type
that can accept any style argument,
including an array of elements.

GetSetting DWORD Settinfu gets the settin§ Setting and places the value
VARIANT *Va ue m Value. the etting argument is a unique

number that represents a specific setting
type. The Value argument is a union
argument type that can accept any style
argument, mcluding an array of elements.

FIG. 10

IEngineManagement
Inteiface

Arguments Description

Function DWORD Setting Initiate the function as represented by
VARIANT* the Setting argument, usin~ a variable number
Value of arguments musing the alue array.

FIG. 12

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 6 of 90

U.S. Patent Aug. 3, 2004 Sheet 5 of 44 US 6, 771,381 B1

ENGINE MANAGEMENT- LAYER 1 r---- 26

LOAD I UNLOAD ENGINE (FILE 1) v 1'---- 1 24

DYNAMIC LINKING ENGINE FUNCTION CALLS v 1'---- 1 26

(FILE 2)

INITIALIZE ENGINE SETTINGS v 1'---- 1 28
(FILE 3)

FIG. 8

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 7 of 90

U.S. Patent Aug. 3, 2004 Sheet 6 of 44 US 6, 771,381 B1

130 136 140
l l ;

FILE 1 FILE2 FILE3

ENGINE FUNCTION A ENGINEDLLA ENGINE SETTING A

ENGINE FUNCTION B ENGINEDLLB ENGINE SETIING B

ENGINE FUNCTION C ENGINEDLLC ENGINE SETTING C

• • •
• • • • • •

I I I

((-(
132 138 142

FIG. 9

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 8 of 90

U.S. Patent Aug. 3, 2004 Sheet 7 of 44

ENGINE CONFIGURATION - LAYER 2

SET SETTING

GET SETTING

LOAD SETTING

SAVE SETTING

IS SETTING VALID

DEFAULT SETTING

PROMPT SETTING

FIG. 11

US 6, 771,381 B1

1--

,t--

... ~

.-r--

--r--

--
·t--

... t--

24

144

146

148

150

152

154

156

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 9 of 90

U.S. Patent Aug. 3, 2004 Sheet 8 of 44 US 6, 771,381 B1

ENGINE FUCTION -LAYER 3 r--- 22

PERFORM FUNCTION
.-t-- 158

.-t-- 160
GET FUNCTION RESULTS

CLEAR FUNCTION RESULTS
,r-- 162

EVENT FEEDBACK
, r-- 164

FIG. 13

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 10 of 90

U.S. Patent Aug. 3, 2004 Sheet 9 of 44 US 6, 771,381 B1

48
__./

42\ D

76, 78--.... f-- 44~~
46 ...,_ - -

50
J

"'--lc:::J~n1,
I

FIG. 14

50 52
40 58) '-IKEYBOARDII MOUSE 1...--/ 48

I I DISPLAY __./

\
CPU INTERFACE I 72 --..,_ __./

56 54 DISPLAY

\
INTERFACE

I
64 I (6o (62 I

DISK .-/ I ROM I I RAM I COMMUNICATIONS
PORT CONTROLLER

I
HARD CD ROM --..,_
DRIVE

(68
FLOPPY

66 DRIVE ~
70

INFRARED
RECEIVER

(OPTIONAL)

\
78

FIG. 15

"-74
INFRARED

TRANSMITTER
(OPTIONAL)

_\
76

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 11 of 90

U.S. Patent Aug. 3, 2004 Sheet 10 of 44 US 6, 771,381 B1

40 58) '-I KEYBOARD I MOUSE I _./ 48
DISPLAY ~

\ I I
CPU I 72 INTERFACE ~ DISPLAY _./

56 54 INTERFACE

\ I

50 52

64 I (6o (62 l /
DISK I ROM I I RAM I COMMUNICATIONS

CONTROLLER PORT
I

'=74 HARD CD ROM,_ RADIO RADIO
DRIVE RECEIVER TRANSMIITER

(68 (OPTIONAL) (OPTIONAL)
FLOPPY

66 DRIVE --.... \ \
70 82 80

FIG. 16

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 12 of 90

U.S. Patent Aug. 3, 2004 Sheet 11 of 44 US 6, 771,381 B1

r :v

-
--

-

' ./

~
84

' ..J

FIG. 17

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 13 of 90

U.S. Patent Aug. 3, 2004 Sheet 12 of 44 US 6, 771,381 B1

110 ---- VISUAL INTERFACE
(5- 10%) (CORBAIVBX/OCX/POWER BUILDER/ DELPHI)

_J WINDOWS MANAGER (MFC) I 108

_j OBJECT MANAGER
106

r 122 •WINDOWS •WINDOWS •WINDOWS
LEVEL3 REPRESENTATION REPRESENTATION REPRESENTATION

120 •WINDOWS •WINDOWS •WINDOWS
- VISUAL LEVEL2 ERROR MANAGER ERROR MANAGER ERROR MANAGER

CLASSES •BRIDGE •BRIDGE •BRIDGE
104

118 • SUPPLEMENTARY • SUPPLEMENTARY • SUPPLEMENTARY
LEVEL 1 DIALOGS DIALOGS DIALOGS

r 116 • CONSISTENT • CONSISTENT • CONSISTENT
LEVEL3 OBJECT INTERFACE I OBJECT INTERFACE OBJECT INTERFACE

114 •BRIDGE •BRIDGE •BRIDGE
C++ - CLASSES. LEVEL2 • ENGINE FILL- IN • ENGINE FILL- IN • ENGINE FILL- IN 102

112 • PROTECTION • PROTECTION • PROTECTION
LEVEL 1 • ERROR MANAGER • ERROR MANAGER • ERROR MANAGER

• ADMINISTRATION • ADMINISTRATION • ADMINISTRATION
I

I I I
I

I - TECHNOLOGY

I
SCAN

I
IMAGE CLEANUP .I OCR

CATEGORIES
100

UNDERLYING KOFAX, XIONICS, SEQUOIA, TIS, XEROX, CAEREI
ENGINES SEAPORT, TWAIN CLEAR IMAGE, CALERA, NESTOR,

PIXEL TRANSLATIONS SEAPORT PRIME RECOGNITION,
LIGATURE, MITEK

FIG. 18

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 14 of 90

U.S. Patent Aug. 3, 2004 Sheet 13 of 44 US 6, 771,381 B1

OBJECT MANAGER 14

166

ENGINE OBJECT COMPONENT 16,18,20

FIG. 19

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 15 of 90

U.S. Patent Aug. 3, 2004

MACHINE I CLIENT

186
(

OBJECT
MANAGER

LAYER

172
(

MACHINE I CLIENT

• OBJECT MANAGER
• ENGINE OBJECT
• CORE TECHNOLOGY

Sheet 14 of 44 US 6, 771,381 B1

SERVER/LAN

SERVER/LAN

MACHINE/
CLIENT

ENGINE
OBJECT
LAYER

OBJECT
MANAGER

LAYER

184
(

180

CORE TECHNOLOGY
ENGINE OBJECT

COMPONENT

176

178
(

FIG. 20

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 16 of 90

U.S. Patent Aug. 3, 2004 Sheet 15 of 44 US 6, 771,381 B1

OBJECT MANAGER 14

LAN/INTRANET, INTERNET, WEB
168

ENGINE OBJECT COMPONENT 16,18,20

FIG. 21

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 17 of 90

U.S. Patent Aug. 3, 2004

BROWSER/
THIN CLIENT

186
(

OBJECT
MANAGER

LAYER

MACHINE I CLIENT

• OBJECT MANAGER
• ENGINE OBJECT
• CORE TECHNOLOGY

Sheet 16 of 44 US 6, 771,381 B1

WEB SERVER

BROWSER/
THIN CLIENT

ENGINE
OBJECT
LAYER

OBJECT
MANAGER

LAYER

184
(

180
(

CORE TECHNOLOGY
ENGINE OBJECT

COMPONENT

176a

178
(

FIG. 22

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 18 of 90

U.S. Patent

~@
~

L....--

~
~

1/

arrm
~ .---

0 - L...__
N

~~LV

~

Aug. 3, 2004 Sheet 17 of 44

,---

I--

I--

y~

-

-

(

N -N

A

~~
r """

"""

L·,.;~
t

./ o;o;;;;::
7 ' 7

(

US 6, 771,381 B1

~

~

~-~ ~vl-- N
'-I-

c:o
0
C\J

~ co
a..

'--

,--- r--;:::; ~~------ N
0
"0
c

:;;;
IT:
Q)

(tj
u

(f)

'----

I
.---

-.::t
0
N -

(tj
~ ·c::;

~
~
~

~
~
u::
E
co
Q
0
c.. -:-:
(.)

' 1--- r:!
N

'--

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 19 of 90

U.S. Patent Aug. 3, 2004 Sheet 18 of 44 US 6, 771,381 B1

!

f ~(~DD~ODD~o= ~
D D
D D
D Ill D

o.....-----~0
D II b
D
D
D Ill
DL-----~

D
D
D
D Ill

II

oL-----~

D

~~
~~ -.! 'g
D II D
D D
D D

6 Ill 6
~ \~)~
D v D

)
Oo
0
N

~

-

-H~

-

)

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 20 of 90

Open Document

Close Document

Zoom In

Zoom Out

Print Document

Print Image

Annotation
Tool Bar

210".._ 1 1 d'h Adval?-ced
- FunctiOn

Tool Bar

Change View

Exit

r Annotations Toolbar

200" 214"

jSCale: n/a I Page: n/a

FIG. 23C 204"

208"

Text
Image --Htt--212"

202"

d
•
\Jl
•
~
~
~ =

>
= ({Q
~
~

N c c
~

'JJ.

=­~
~

'"""' '0
0,
~
~

e
rJ'l
0'1
~
""-l
1--"
~
00
1--"

~
1--"

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 21 of 90

U.S. Patent Aug. 3, 2004 Sheet 20 of 44 US 6, 771,381 B1

VIEWER PROCESS 188

OBJECT MANAGER 14

166

ENGINE OBJECT COMPONENT 16,18,20

FIG. 24

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 22 of 90

U.S. Patent Aug. 3, 2004

MACHINE I CLIENT

196

VIEWER
PROCESS

186
(

OBJECT
MANAGER

LAYER

MACHINE I CLIENT

• OBJECT MANAGER
• ENGINE OBJECT
• CORE TECHNOLOGY

VIEWER
PROCESS

194

172
(

Sheet 21 of 44

SERVER/LAN

MACHINE/
CLIENT

184
(

US 6, 771,381 B1

VIEWER
PROCESS

SERVER/LAN

ENGINE
OBJECT
LAYER

180
(

190

176

178
(

OBJECT CORE TECHNOLOGY
MANAGER

LAYER

VIEWER
PROCESS

ENGINE OBJECT
COMPONENT

192

FIG. 25

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 23 of 90

U.S. Patent Aug. 3, 2004 Sheet 22 of 44 US 6, 771,381 B1

VIEWER PROCESS 188

OBJECT MANAGER 14

LAN/INTRANET, INTERNET, WEB 168

ENGINE OBJECT COMPONENT 16,18,20

FIG. 26

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 24 of 90

U.S. Patent Aug. 3, 2004

BROWSER/
THIN CLIENT

196a 172

VIEWER
PROCESS

186
(

OBJECT
MANAGER

LAYER

MACHINE I CLIENT

• OBJECT MANAGER
• ENGINE OBJECT
• CORE TECHNOLOGY

VIEWER
PROCESS

194a

(

Sheet 23 of 44 US 6, 771,381 B1

174a

190a

WEB SERVER
VIEWER
PROCESS

BROWSER/
THIN CLIENT

184
(

180
(

OBJECT CORE TECHNOLOGY I
MANAGER

LAYER

VIEWER
PROCESS

ENGINE OBJECT
COMPONENT

192a

178
(

FIG. 27

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 25 of 90

U.S. Patent Aug. 3, 2004 Sheet 24 of 44 US 6, 771,381 B1

PRINTER DIGITAL COPl ER MUL Tl-FUNCTIONAL
PERIPHERAL {li.e. FAX)

FIG. 28

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 26 of 90

U.S. Patent Aug. 3, 2004 Sheet 25 of 44 US 6, 771,381 B1

Virtual Copier ld!QIOO
THE COMPANY UMITEJJ

Instant VC

-- -- [:Jb:]b:Jb]~ ------
- PowerVC

Erom:l Open File [i]jjoptions ... j

Io: I Virtual Copier [i]jjoptions ... j

~ -- q
-

.-Status

[E]GJ[B[BI9 ~~~~~ ~
Virtual Copy Ready

[Document Information
Page 1 of 6 I

FIG. 29

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 27 of 90

U.S. Patent Aug. 3, 2004 Sheet 26 of 44 US 6, 771,381 B1

PowerVC---------------------

From:l Open File liJIIoptions ... l
To: ~-Vi_rtu_a_l C_o.:.,_pi_er __ -=liJ~IIoptions ... 1

go

FIG. 30

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 28 of 90

U.S. Patent Aug. 3, 2004 Sheet 27 of 44 US 6, 771,381 B1

CLIENT

INPUT ¢=::; SERVER ¢=::; OUTPUT

PROCESS PROCESS PROCESS

FIG. 31

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 29 of 90

U.S. Patent Aug. 3, 2004 Sheet 28 of 44 US 6, 771,381 B1

Virtual Copier
End User Application

3rd Party App

Input

Output

FIG. 32

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 30 of 90

U.S. Patent Aug. 3, 2004 Sheet 29 of 44

3rd Party Application

Virtual Copier Server
Module

FIG. 33

US 6, 771,381 B1

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 31 of 90

U.S. Patent Aug. 3, 2004 Sheet 30 of 44 US 6, 771,381 B1

Start Copy

'

r

Initiate Input~--~~~ Update Client
Module

Initiate Process
Module

r

Update Client

Initiate Output......----...,. Update Client
Module

FIG. 34

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 32 of 90

U.S. Patent Aug. 3, 2004 Sheet 31 of 44 US 6, 771,381 B1

VC Server

- Modules f--- Go to I-- Status

Program f..- r---- Cancel Error -

- VDocument - Reset ()

Collection

FIG. 35

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 33 of 90

U.S. Patent Aug. 3, 2004 Sheet 32 of 44 US 6, 771,381 B1

Modules

1--
InputModules

1----
CopierModule Name

1--

ID I--
t--

OutputModules - Default

1--
File

'----
ProcessModules

Configure

i 1--

Collections of Load
CopierModule objects, of

------types InputModule,
OutputModule, and Unload
ProcessModule I--
respectively

IsLoaded ()

1---
SavesettingsAs
Default ()

'--- ResetSettings ()

Collection

FIG. 36

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 34 of 90

U.S. Patent Aug. 3, 2004 Sheet 33 of 44 US 6, 771,381 B1

Program

lnputModule - "---- Name

- OutputModule IP
"---- -

~ ProcessModules ProcessModule - File

Configure ()
'----

Collection I Property I I Method IEJ

FIG. 37

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 35 of 90

U.S. Patent

Disk files of
actual
Images

I
VDocument
internal
layout

Aug. 3, 2004

File A
3 Pages

Sheet 34 of 44

File B
1 Page FileC

3 Pages

US 6, 771,381 B1

FileD
1 Page

I File __JII F~e II F~e II F~e II F~e II F~e II F~e II F~e II F~e I

I._P_a_ge ___ ___JII P~ge II P~e II P;gc II P~ge II P~ge II P~c ~ P;ge II P~ge I

'-~-~-g~-c-um-en_t_....J I P~gc II P~e II P;ge ~ P~e II P~gc II P~e II P~jl P~ge I

FIG. 38

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 36 of 90

U.S. Patent Aug. 3, 2004 Sheet 35 of 44 US 6, 771,381 B1

VDocument

~
VPages VPage File

1---- AutoDelete
f...--

Add
'---- Page

Clear Remove I-- '---

Collection I Property I I Meiliod I I Event

FIG. 39

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 37 of 90

U.S. Patent Aug. 3, 2004 Sheet 36 of 44 US 6, 771,381 B1

Error

r----- ModuleiD

r----- SubModuleiD

1---
ErrorCode

1---
ErrorText

1---
Severity

URL
L_

Collection

FIG. 40

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 38 of 90

U.S. Patent Aug. 3, 2004 Sheet 37 of 44 US 6, 771,381 B1

Status

f----
ModuleiD

SubModuleiD -

r--- Status Type

r--- StatusNumber

f..--
StatusText

URL
-

f..--
Infol

'-------
Info2

Collection I Property I I Method I EJ
FIG. 41

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 39 of 90

U.S. Patent Aug. 3, 2004 Sheet 38 of 44 US 6, 771,381 B1

aol Server Module Events Generated by Server

~ H Start virtual copy operation (Go)~ vseProgramStart ...
I Load lOP Mtdules fj vseModuleLoadStart I

vseModuleLoadEnd l
f Execute lOP ~odules fj vseModuleGoStart I

I (vseModuleCanceled) I
I (vseProgramCanceled) I

... I vseModuleGoEnd l u ~

I End virtual copy operation (Go) vseProgramEnd 1

...
vseModuleUnloadStart 1 I Unload lOP Modules~

I .a. .. 1 vseModuleUnloadEnd I +
FIG. 42

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 40 of 90

U.S. Patent Aug. 3, 2004 Sheet 39 of 44 US 6, 771,381 B1

Client Module Server Module

Initiate Server COM Interface
Module

~
Present available- Modules Object

modules

+ +
~ Select modules Program Object

to use

~
...

Start a virtual copy ... Go() Method

~
Process Server Status & Error

feedback Events

I

FIG. 43

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 41 of 90

U.S. Patent Aug. 3, 2004 Sheet 40 of 44 US 6, 771,381 B1

lOP Module

~ Application Manager Class

Server Module
Events

I Status () I
~'

Event Manager Class

E:J
1-v/

J. ;. >- J. >-

~ 7 7 ~ 7

Panel Manager Document Layout Manager
Server Module Class Navigation Class Class

Methods

D
~ //'1

~ 7 v v v

'N

Collection I Property I B B
The Client Module has a fixed set of features that it needs to perform:

FIG. 44

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 42 of 90

U.S. Patent Aug. 3, 2004 Sheet 41 of 44 US 6, 771,381 B1

IPO Module Feedback

~

H Configure ()

H Go (VDocument Feedback)
1 H Error I

H ResetSettings ()
y Status I

SaveSettingsAsDefault ()
L__

I Object I Collection I Property I Method I Event

FIG. 45

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 43 of 90

U.S. Patent Aug. 3, 2004 Sheet 42 of 44 US 6, 771,381 B1

Error

1----
Sub Module

I---
ErrorCode

1----
ErrorText

1----
Severity

1----
URL

Cancel
L...._____

Collection I Propercy I I Melliod I EJ

FIG. 46

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 44 of 90

U.S. Patent Aug. 3, 2004 Sheet 43 of 44 US 6, 771,381 B1

Status

~
SubModuleiD

1--- Status Type

f-
StatusNumber

1---
StatusText

f- URL

~
Infol

1------
lnfo2

'---
Cancel

Collection I Property I [_::_] EJ
FIG. 47

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 45 of 90

U.S. Patent Aug. 3, 2004 Sheet 44 of 44 US 6, 771,381 B1

Server Module lOP Module
Server Module Interface to lOP Interface Class

v
1\ r------1

I Go (VDocument Feedback) I
I Feedback I

I Configure () I t .(}

I ResetSettings () I
~)>

Executive Class Configuration Class

I SaveSettingsAsDefault () I
I Go (VDocument) J I configure () I

I Reset Settings () I

I SaveSettings ... I

I Object I Collection I Property I ~ B
FIG. 48

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 46 of 90

US 6,771,381 B1
1

DISTRIBUTED COMPUTER
ARCHITECTURE AND PROCESS FOR

VIRTUAL COPYING

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Appli­
cation 60/108,798, filed Nov. 13, 1998, incorporated herein
by reference.

This application is related to, a continuation-in-part appli­
cation of, and claims priority to, the following non­
provisional applications: Ser. No. 08/950,838, filed Oct. 15,
1997, now U.S. Pat. No. 6,185,590;

2
Additionally, every API manages errors differently further

complicating the problems described above. Some APis
return a consistent error code for each function. Error
management in this case is very organized and manageable.

5 Other APis return error codes as one of the parameters
passed to the function. There are APis that mix the choice of
error management and have some functions return an error
code while other functions pass the error code as a parameter
of a function. Errors can also be managed by a callback

10
function, eliminating the need for passing any error code as
part of the function. In some instances of a poorly imple­
mented API the errors are not passed back at all.

Every engine, such as a text retrieval or an OCR (Optical

Ser. No. 08/911,083, filed Aug. 14, 1997, now abandoned;
Ser. No. 08/950,911, filed Oct. 15, 1997, now abandoned; 15

Character Recognition) engine, has a unique interface. This
interface is generally a "C" -level API (Application Program
Interface). Further, an API can at any time be synchronous,
asynchronous, manage one or more callbacks, require input, Ser. No. 08/950,837, filed Oct. 15, 1997, now abandoned;

Ser. No. 08/950,738, filed Oct. 15, 1997, now abandoned;

Ser. No. 08/950,741, filed Oct. 15, 1997, now abandoned;
all of which are hereby incorporated by reference.

This application is related to, and claims priority to, the
following provisional applications by way the claim of
priority of the above listed non-provisional applications:

Oct. 18, 1996, Ser. No. 60/028,129;

Oct. 18, 1996, Ser. No. 60/028,522;

Oct. 18, 1996, Ser. No. 60/028,128;

Oct. 18, 1996, Ser. No. 60/028,697;

Oct. 18, 1996, Ser. No. 60/028,639;

pass back output, carry a variety of different styles of
functions, return values or not return values, and implement
the unpredictable. This unpredictability in APis further

20 compounds the problem of developing a sane way of inter­
facing between components and APis.

To date, because of the complexities of "C" -level APis
and components interfacing thereto, the only way to create
a component out of an existing "C" -level API is to have an

25 experienced programmer in the field to do the work. Humans
can intelligently analyze an API, and create a component
based on intelligent decisions and experiences. In most
cases, the learning curve for understanding and integrating

Oct. 18, 1996, Ser. No. 60/028,685; all of which are 30

hereby incorporated by reference.

a new engine can be one man-month to several man-years
and generally requires highly experienced "IC" program­
mers. Requiring a human to perform the necessary work is
costly, and subject to real-life human constraints.

FIELD OF THE INVENTION

The present invention is generally related to a computer
architecture and process for stand-alone and/or distributed
environment, and more particularly to a computer architec­
ture and process using a substantially uniform management
in a stand-alone and/or distributed computing environment
including, for example, client server and/or intranet and/or
internet operating environments.

BACKGROUND OF THE RELATED ART

A "C" or "C++"- Level API (hereinafter "C" Level),
which is the native language and interface for a vast reposi­
tory of core technologies from small software vendors and
research laboratories, are unique to each designer. The
designer of a text retrieval "C" -API will generally imple­
ment an interface that is completely different than a second
inventor creating a "C"-level API for OCR.

Every "C" -level API is unique, both in its choice of API
syntax as well as its method for implementing the syntax.
Some API's consist of one or two functions that take

Since there is no structure or format for implementing
"C"-level APis, the ability to automatically transform a

35
unique API into a standard component would seem
impossible, since that would take a nearly-human level of
intelligence.

In addition, in spite of the continued automation of
business processes, companies are increasing their paper use

40
by 25-30% and spending up to 15% of their total budget on
managing paper. Companies are often running dual
processes-a computerized process along with the corre­
sponding paper filing system-and paying an extraordinary
price for it. Just a few examples will illustrate the problem:
1) accounting clerks are maintaining paper invoices with

45

50

information that is also being re-keyed into accounting
systems, 2) administrative assistants are filing incoming
correspondence in cabinets for customers whose records are
also being electronically maintained by contact management
systems, 3) help desk operators are storing complaints sent
in on paper while also tracking those complaints in a
computerized system. Additional industry trends include the
following:

parameters offering options for different features offered by
the technology. Other APis consist of hundreds of functions 55

with few arguments, where each function is associated with

For every $100M in increased revenues, a company will
use 8.8 million additional pages of paper

The Document Management market is expected to grow
at 30% per year a particular feature of the core technology. Other APis

provide a mixture of some features being combined with one
function with many arguments, while other features are
separated into individual function calls. 60

Without any constraints, each designer of a core technol­
ogy chooses to implement his or her technology with an
interface that is suitable to the subject or simply was the
most expedient choice of the moment. Since there are no
constraints, a "IC" -level API has a totally unpredictable 65

interface that can often be the hindrance to using the core
technology.

The digital device market is growing at 20% per year
Estimates show the web-based document imaging market

growing at 50% per year
The digital device manufacturers, especially the copier

companies, are heavily promoting the ability to connect
their devices to networks, but have not been able to
deliver an effective software solution to date.

Businesses continue to automate more processes, but
managing the associated paper is often ignored, resulting in
inefficiency and higher costs.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 47 of 90

US 6,771,381 B1
3

I have determined that a component factory, if it is to be
truly automated or manually expedited, must be able to take
any "C" -level API and transform it into a component.

I have also determined an efficient and workable design
for an architecture to define the migration path for any 5

"C"-level API into a component.
I have also determined that it is desirable to develop

software tools for automatically generating reusable soft­
ware components from core software technologies, thus
making these software technologies available to a much 10

larger user base.
I have further determined that it is desirable to design a

distributed computer architecture and process for manually
and/or automatically generating reusable software compo­
nents. The computer architecture may be implemented using 15

a client server and/or intranet and/or internet operating
environments.

4
The computer architecture is designed for managing a

diverse set of independent core technologies ("engines")
using a single consistent framework. The architecture bal­
ances two seemingly opposing requirements: the need to
provide a single consistent interface to many different
engines with the ability to access the unique features of each
engine.

The benefit of the architecture is that it enables a company
to rapidly "wrap" a sophisticated technology so that other
high-level developers can easily learn and implement the
core technology. The computer architecture is therefore a
middleware or enabling technology.

Another benefit of the architecture is that it provides a
high-level specification for a consistent interface to any core
technology. Once a high-level developer learns the interface
described herein for one engine, that knowledge is easily
transferable to other engines that are implemented using the
architecture. For example, once a high-level developer
learns to use the computer architecture for OCR (Optical
Character Recognition), using the computer architecture for
other engines, such as barcode recognition or forms
processing, is trivial.

The architecture described herein is, at once, a framework
for rapidly wrapping sophisticated technologies into high-

I have further determined that it is desirable to design a
computer architecture and process for image viewing in a
stand-alone and/or distributed environment. The computer 20

architecture and process optionally uses a substantially
uniform management layer in a stand-alone and/or distrib­
uted computing environment including, for example, client
server and/or intranet and/or internet operating environ­
ments.

25 level components, as well as a framework for high-level
developers to communicate with a diverse set of engines.
The creating of a component factory is based on the fact that
the architecture defines a clear path for "wrapping" any
C-level API into a component using simple structures and

I have further determined that it is desirable to enable a
typical PC user to add electronic paper processing to their
existing business process.

I have further determined that it is desirable to enable
software that manages paper so that it can be electronically 30

and seamlessly copied in and out of devices and business
applications (such as Microsoft Office, Microsoft Exchange,
Lotus Notes) with an optional single-step Go operation.

SUMMARY OF THE INVENTION

One would expect the translating a "C" -level API from its
native state into a component would require human-level
intelligence. This is mainly because "C" -level APis have
virtually no constraints as to how they can be implemented.
This means that there are an infinity variations of APis,
which can only be managed by human-level intelligence.
While this point is true, I have determined that the appro­
priate solution starts at the other side of the equation, which
is the component itself.

My solution starts out with a definition of a component
that can sustain the feature/function requirements of any
API. In other words, the interface of a generic component
can be defined such that the features and functions of
virtually any API can be re-implemented within its bounds.
The two known end-points are, for example, the "C" -level
API that generally starts with each component (although
other programming languages may also be used and are
within the scope of the present invention), and the compo­
nent interface that represents any set of features/functions on
the other side. The component factory migrates the original
"C"-level API from its original state into the generic inter­
face defined by the topmost layer. The first feature that can
be demonstrated is that there is a topmost layer that can
define a component interface that can represent the features/
functions of most core technologies.

many rote steps. This process is currently being done in an
inefficient manner by a programmer in the field.

In addition, the method described herein for creating a
component factory creates a well-defined multi-tiered archi­
tecture for a component and automates, substantially

35
automates, or manually expedites hereinafter automate the
process of migrating a "C" -API from its native state through
the various tiers of the architecture resulting in a standard­
ized component. Advantageously, the method described
herein does not base the component factory on making

40
human-level intelligent decisions on how to translate a
"C"-API into a component. Rather, by creating a well­
defined architecture described below that is multi-tiered, the
method is a series of incremental steps that need to be taken
to migrate the "C"-API from one tier within the architecture

45
to the next. In this way each incremental step is not a major
one, but in sequence the entire series of steps will result in
a component.

Since each step of migration is not a major one, the
chances for automating these steps is significantly higher

50 and the likelihood of being able to create the component
factory becomes feasible. This approach is in fact what
makes the method cost-effective, since the alternative
approach, i.e., computer-generated human-level decision
making, has many years before becoming sophisticated

55 enough to replace humans in any realistic decision-making

60

process.
The main features of the architecture are twofold:
1) Defining system architecture that describes in detail

how to implement a component from a "C" -level API;

The component factory migrates the "C"-levelAPI to the
topmost level. Doing this in one large step would be
impossible since the "C" -level API has a near-infinite vari­
ety of styles. However, the architecture advantageously has
enough well-defined and well-structured layers for imple- 65

menting the topmost component interface, for creating the
component factory.

2) Creating a component factory by automating the migra­
tion of a "C" -level API from one tier within the
architecture to the next.

The latter feature is the key to actually making the compo­
nent factory feasible. With a fixed architecture that can be
used to implement a "C" -level API as a component (using a
programmer), that same architecture can be used as the basis
for the component factory model.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 48 of 90

US 6,771,381 B1
5 6

cesses become the primary storage of paper in electronic
form. Information that is typically managed and processed
in paper form is "copied" into the system and managed by
the business processes with which users are accustomed,

In order to make the component factory, each step of the
architecture needs to be designed to facilitate automation or
manually expedited. In other words, I have determined that
automating/expediting the process of taking the original
"C"-level API and migrating it to a Levell layer, and then
a Levell to a Level 2, and then a Level2 to a Level 3 layer,
and so on, the component has been implemented automati­
cally or more efficiently. The component factory is therefore

5 which is made possible by using Virtual Copier. Simple
extensions of Virtual Copier support seamless electronic
outsourcing of paper processing and archival services over
the web.

a sum of the ability to automate migrating the "C"-levelAPI
from one layer to the next within a well-defined architecture 10

for implementing components.

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper processing to
existing Intranet and client-server business processes with­
out any fuss. Whether it is an office clerk that needs to easily
copy a report from a desktop scanner to the company's
Intranet-networked copier, or an accounting software inte­
grator that wants to embed paper processing, Virtual Copier
offers a simple solution. To the office clerk Virtual Copier is
a document imaging application packaged in the familiar
setting of an office copier. To the integrator, the underlying

There are numerous core technologies, such as text­
retrieval and ICR (Intelligent Character Recognition), that
have already been implemented, and are only available as
"C"-levelAPis. Many, if not most, core technologies are first 15

released exclusively as "C"-level APis. While there are
integrators and corporations who have the team of technolo­
gists who can integrate these "C" -level APis in-house, most
companies are looking for component versions that can be
implemented at a much higher level. 20 open architecture of Virtual Copier offers a simple integra­

tion path for embedding paper processing into its client­
server or web-based software solution.

Therefore, many of the core technologies that are only
available in a "C" -level API are not being used due to their
inaccessible interface. The benefit of the component factory
is that it can rapidly make available core technologies
implemented as "C" APis that would otherwise be underuti- 25

lized or dormant in research labs by converting them to
high-level components that can be used by millions of
power-PC users.

Although managing paper manually is one of the great
problems facing corporations, there has been little inn ova­
tion in enabling those workers to eliminate the need to
continuously work with paper manually. Much of the prob-
lem stems from the complexity of traditional document
management systems, which require days of training and
months to become familiar with the system in order to be
proficient. Virtual Copier was designed to be as simple as a
copier to operate, and yet still provide the complete cap a-
bility of integrating paper with existing business applica­
tions. By simplifying the interface and underlying software
infrastructure, VC can manage paper in electronic form as

With the advent of the World Wide Web (WEB) this
opportunity has increased exponentially. The WEB is now 30

home to a vast number of WEB authors with minimal formal
training who can implement HTML pages and build web
sites. One of the fundamental technologies for extending the
capability of the WEB from simple page viewing to inter­
active and sophisticated applications is components. 35 easily as is currently done in physical form.

A component extends the capability of HTML by enabling
a WEB author to add core technology as a pre-packaged
technology. Since components are fundamental to the
growth and usability of the WEB, having a component
factory that can translate "C" -level toolkits into components 40

that are then usable within WEB sites opens a vast and new
worldwide market to these technologies.

The purpose of the Virtual Copier ("VC") aspect of the
present invention is to enable a typical PC user to add
electronic paper processing to their existing business pro- 45

cess. VC is an extension of the concept we understand as
copying. In its simplest form it extends the notion of copying
from a process that involves paper going through a conven­
tional copier device, to a process that involves paper being
scanned from a device at one location and copied to a device 50

at another location. In its more sophisticated form, VC can
copy paper from a device at one location directly into a
business application residing on a network or on the Internet,
or visa versa. The VC invention is software that manages
paper so that it can be electronically and seamlessly copied 55

in and out of devices and business applications (such as
Microsoft Office, Microsoft Exchange, Lotus Notes) with an
optional single-step Go operation. The VC software can
reside on a PC, LAN/WAN server, digital device (such as a
digital copier), or on a web server to be accessed over the 60

Internet.

VC extends the notion of a copier, which simply replicates
the image of an original document onto another piece of
paper using a single GO or START button, to do a similar
operation in software so that the image gets seamlessly
replicated into other devices or applications or the Internet.

An example of this is the actual implementation of Virtual
Copier as a consumer product. The interface of the consumer
product called Virtual Copier has a Go button much like a
physical copier. This GO button can copy paper, whether
physical or electronic, from one device and or application to
another device and/or application.

What makes Virtual Copier as simple as its physical
counterpart in at least one embodiment is the fact that it
replicates the identical motions that a user who is making a
copy using a physical photocopier goes through. When a
user photocopies a document, he/she selects where they
want to copy from (i.e. the sheet feeder), where the user
wants to copy to (i.e. 6 copies collated and stapled) and then
presses a GO button to actually carry out the photocopy
process. With Virtual Copier the process feels familiar
because the sequence is the same with just the Power VC
portion of the main Virtual Copier window.

The power of Virtual Copier is the fact that the From can
be a physical device (e.g. digital copier, fax or scanner) or
an application (e.g. Lotus Notes, Microsoft Exchange, the
Internet, or an electronic filing system). The To can also be
a physical device (e.g. a fax, digital copier, or printer) or an
application (e.g. Lotus Notes, Microsoft Exchange, the
Internet, or an electronic filing system). Even though paper

Virtual Copier is designed to solve the corporate paper
problem by enabling existing web-based and client-server
applications to manage paper as part of their solution.
Virtual Copier links the familiar and universal world of
paper and digital devices to web-based and client-server
applications. The result is that the automated business pro-

65 is being copied electronically from devices to applications,
from applications to devices, from devices to devices, or
from applications to applications, the user simply has one

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 49 of 90

US 6,771,381 B1
7

sequence to execute: select From, select To, and then press
GO. Virtual Copier will accomplish all translations between
device and applications automatically and seamlessly.

Another reason that paper is still a major corporate issue
is that traditional document management systems require 5
that a company invest in a whole new system just to store
electronic images. Although this is the only way that docu­
ment management systems have been designed and
delivered, it is in fact highly inefficient. Most companies
already manage information about physical documents in

10
some form of software applications.

For example, accounting systems have long been used to
maintain information about invoices and bills that arrive into
a company from outside sources as physical pieces of paper.
When an invoice arrives, its information is keyed into the
accounting software, where balances are maintained and 15

accounts payable information is coordinated. Yet the original
invoice is stored manually, and every time that a request is
made for a copy of the signed invoice, someone manually
retrieves the invoice from a physical filing cabinet. Account­
ing systems, like most business applications, typically have 20

no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an
accounting system is cumbersome, costly, and difficult to
maintain, and even more difficult to coordinate.

Virtual Copier solves this problem in at least one embodi- 25

ment by copying paper directly into the existing accounting
system. Simply adding a To item in the Virtual Copier
window enables a user to copy paper directly into the
appropriate accounting record of the existing accounting
system. This requires no retraining (users who are trained on 30

the accounting system will still use the accounting system in
the same way), requires no document management system
(the electronic copy of the document is actually being
maintained by the accounting system itself), there is no
coordination between two systems (Virtual Copier embeds 35

the invoice with the appropriate accounting record), and it is
simple (one Go button).

What is true with regard to the example above of an
accounting system is true of most other business applica­
tions. The power of Virtual Copier is that it can turn an 40

information system into a document management system by
adding support for electronic paper directly into the existing
business application, whether it is a client, server-based, or
web-based system.

Virtual Copier enables corporations to perform sophisti- 45

cated document imaging with their existing Web-based and
client-server applications through a user interface that is as
familiar as the office copier. Virtual Copier can be used
out-of-the-box as a standalone application to copy, scan, fax,
or print images using existing digital devices within corpo- 50

rate environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into
Web-based and client server applications, such as ERP or
accounting systems, to eliminate paper from existing busi­
ness processes and legacy applications. Virtual Copier can 55

also be used to support seamless access to document image
processing and archival over the web since, in at least one
embodiment, the VC interface is implemented as a software
application.

8
an aspect that is found on a conventional copier. Based on
the modular design of VC, each aspect of VC can be
independently extended, offering much greater flexibility
than conventional copiers.

The five core modules of VC are:

Input Module-The Input Module manages paper or
electronic paper entering VC. This module manages
imaging devices to input paper through scanners,
MFPs, or the new breed of digital copiers. The Input
Module also manages reading electronic paper from
third-party or proprietary applications. The counterpart
to VC's Input Module on a conventional copier is the
scanner subsystem.

Output Module-The Output Module manages paper or
electronic paper exiting VC. Like the Input Module,
this module manages imaging devices to output paper
to standard Windows printers, specialty image printers,
MFPs, or the new breed of digital copiers. The Output
Module also manages writing electronic paper to third-
party or proprietary applications. The counterpart to
VC's Output Module on a conventional copier is the
printer or fax subsystem.

Process Module-The Process Module applies processing
to the electronic paper as it is being copied. Examples
of a process are OCR and ICR. The Process Module can
also apply non-imaging functionality as well, such as
workflow or other relevant tie-ins to the electronic
paper as it is being copied. One of the advantages ofVC
over conventional copiers is that multiple processes can
be applied to a single virtual copy. The counterpart to
VC's Process Module on a conventional copier is the
controller.

Client Module-The Client Module presents the elec­
tronic paper as it is being copied, and any relevant
information related to the input or output functions. For
example, if the Output Module is directed to a printer,
then the Client Module might present the finishing
capabilities; if the Output Module is directed to
Goldmine, then the Client Module might present the
target contact record to which the document is being
copied. The counterpart to VC's Client Module on a
conventional copier is the panel.

Server Module-Unlike conventional copiers, VC's
Server Module is a unique subsystem that can commu­
nicate with the other modules as well as third-party
applications. The Server Module is what makes VC a
far more powerful concept than simply an application
that can control a scanner and a printer to mimic a
copier. The Server Module can be used to combine
third-party applications with the new breed of digital
imaging devices to create unique and custom virtual
copier solutions. A virtual copier can be created with
VC by combining a scanner with a printer; or by
combining a scanner with an application; or by comb­
ing an application with an image printer. In each case
VC is dynamically creating a custom virtual copier,
with a complete understanding of how paper flows
from the source to its destination. There is no counter-
part to VC's Server Module on a conventional copier.

One of the primary design goals of VC is to make it
simple to integrate VC with third-party applications. There
are two options to integrating VC into a third-party appli­
cation: running VC as an external service, or embedding VC

VC is architected as an application that delivers end-user 60

functionality while remaining open to third-parties exten­
sions. For example, VC can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The
only difference is that VC does not distinguish between
electronic and physical paper. 65 as an underlying service.

To accommodate third-party extensions, VC is divided
into five essential modules. Each module is a counterpart to

VC is in one embodiment and optionally a standalone
application that enables a user to scan (copy) paper from a

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 50 of 90

US 6,771,381 B1
9

device to a third-party application, and to print (copy) the
reference of an image document from a third-party applica­
tion to a printing device. VC does not require the third-party
application to be aware that VC is operating. Rather, VC
recognizes that the third-party application is running, and it 5
intelligently copies paper to and from that application.

In this scenario the user is interacting with VC's Client
Module in order to execute a copy operation to and from the
third-party application. There does not have to be any
changes made to the third-party application, not even to its

10
interface, in order for VC to operate. The user of VC only
knows that to copy to and from the third-party application,
a custom Input and Output Module must be selected, and the
Go button is pressed.

In order to support copying to and from a third-party
application, VC must be able to support extensions that 15

understand each third-party application. This is accom­
plished through the Input and Output Modules. The Client,
Server, and even Process Modules remain independent
across third-party applications. However, in order to support
outputting to a third-party application, an Output Module is 20

developed that is unique to that third-party application.
Likewise, an Input Module is developed that is unique to a
third-party application in order to support reading images
from that application.

It is the optional Input and Output Modules that render 25
VC extendable. For each third-party application there is a
unique pair of Input and Output Modules that understand the
third-party application, and how to copy images to and from
that application. Each Input and Output Module registers
itself to the Windows registry so that the Server Module

30 knows how to find them. In this way Virtual Copier can grow
indefinitely, to support any number of third-party applica­
tions.

The significant point is that the Input and Output Modules
have their own interface, and can be developed indepen­
dently from any other module. As long as the Input and 35

Output Module conform to the API specified in this docu­
ment it will plug-and-play with VC. VC will be able to mix
and match the custom Input and Output Module with its
standard and other custom Input and Output Modules.

A third-party application can also use the services of VC 40

without its user interface. That is, a third-party application
can embed VC's functionality and provide its own interface
to its functionality. For example, rather than have VC as a
separate application, a special button can be placed on a
third-party application that launches VC in the background. 45

VC is designed so that the Server Module can run
independently from the Client Module. All the core
functionality, including communicating with the Input,
Output, and Process Modules, are performed directly by the
Server Module. The Client Module is generally simply an 50

interface to the Server Module. Therefore, all the services of
the Server Module can be made available in the background

10
It is another feature and advantage of the present inven­

tion to define an efficient and workable design for an
architecture to provide the migration path for any C-level
API into a component.

It is another feature and advantage of the present inven­
tion to develop software tools for automatically generating
reusable software components from core software technolo­
gies.

It is another feature and advantage of the present inven­
tion to develop software tools to make software components
available to a much larger user base.

It is another feature and advantage of the present inven­
tion in providing a distributed computer architecture and
process for manually and/or automatically generating reus­
able software components.

It is another feature and advantage of the present inven­
tion in providing a distributed computer architecture and
process for manually and/or automatically generating reus­
able software components where the computer architecture
is implemented using a client server and/or intranet and/or
internet operating environments.

It is another feature and advantage of the present inven­
tion in providing a computer architecture and process for
image viewing in a stand-alone and/or distributed environ­
ment.

It is another feature and advantage of the present inven­
tion in providing a computer architecture and process that
uses a substantially uniform management layer in a stand­
alone and/or distributed computing environment including,
for example, client server and/or intranet and/or internet
operating environments.

It is another feature and advantage of the present inven­
tion to enable a typical PC user to add electronic paper
processing to their existing business process.

It is another feature and advantage of the present inven­
tion to enable software that manages paper so that it can be
electronically and seamlessly copied in and out of devices
and business applications (such as Microsoft Office,
Microsoft Exchange, Lotus Notes) with an optional single­
step Go operation.

The present invention is based, in part, on my discovery
that it is possible to make the component factory, and that
each step of the architecture is designed to facilitate auto­
mation or manually design of components. The present
invention is also based, in part, on my discovery that by
automating/expediting the process of taking the original
"C"-level API and migrating it to a Levell layer, and then
a Levell to a Level 2, and then a Level 2 to a Level 3 layer,
and so on, the component has been implemented automati­
cally and/or more manually efficiently. The component
factory is therefore a sum of the ability to automate migrat-
ing the "C" -level API from one layer to the next within a
well-defined architecture for implementing components.

The present invention is also based, in part, on my
to a third-party application without the need for an interface.
The third-party application can in fact become the user's
interface to VC. 55 discovery that the object manager and engine object com­

ponent layers may be advantageously be designed to operate
independently, thereby making possible a distributed com­
puting environment, as described below in detail. I have

In order to support VC operating in the background a
third-party application merely has to communicate with the
Server Module directly, as described later in this document.
The Server Module, as all modules in VC, support COM­
based interfaces for simple and direct support from all major 60

Windows development environments.
Accordingly, it is a feature and advantage of the present

invention to implement a component factory, that is auto­
mated or manually expedited.

It is another feature and advantage of the present inven- 65

tion to be able to take any "C" -level API and transform it
into a component.

further discovered that an efficient method of implementing
the engine object component layer is by using pre-populated
tables/files. I have further discovered that the engine man-
agement layer may be advantageously divided into a three
layer structure of load/unload engine, dynamic linking
engine function calls, and initialize engine setting.

In accordance with one embodiment of the invention, a
computer implemented process migrates a program specific
Application Programmer Interface (API) from an original

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 51 of 90

US 6,771,381 B1
11

state into a generic interface by building an object for each
engine. The object provides substantially uniform access to
the engine and engine settings associated with the engine.
The computer implemented process includes the step of
providing an engine management function interfacing with 5

the program specific API. The engine management function
furnishes a protective wrapper for each function call asso­
ciated with the engine, trapping errors, and provides error
management and administration to prevent conditions asso­
ciated with improper engine functioning. The process 10

optionally includes the step of providing an engine configu­
ration function transforming API calls received from the
program specific API into standardized calls. The engine
configuration function provides additional functionality,
including safely loading and unloading the engine. The 15

process optionally includes the step of providing an engine
function managing the standardized calls for each engine,
thereby providing substantially uniform access to the engine
and the engine settings associated with the engine.

In accordance with another embodiment of the invention, 20

a computer implemented method migrates at least one
program specific Application Programmer Interface (API)
from an original state into a generic interface by building an
object for each engine. The object provides substantially
uniform access to the engine and engine settings associated 25

with the engine. The computer implemented method
includes the steps of defining a substantially consistent
interface for individual object components that represent
diverse technologies, and migrating a plurality of engines to
the consistent interface. The computer implemented method 30

also includes the step of substantially automatically and/or
substantially uniformly, managing the individual object
components using a predefined object manager and the
consistent interface.

12
providing one or more features to be executed, and at least
one engine component configured to execute the one or
more features of the engine by mapping a substantially
consistent interface to the engine interface of the engine. The
distributed computer system also includes at least one client
configured to be connectable to the server and optionally
configured to be connectable to another server.

The client includes an object manager layer communi­
cable with and managing the at least one engine component
stored on the server via the substantially consistent interface.

In accordance with another embodiment of the invention,
a distributed computer implemented process migrates a
program specific Application Programmer Interface (API)
from an original state into a generic interface by building an
object for each engine. The object provides substantially
uniform access to the engine and engine settings associated
with the engine. The computer implemented process
includes the step of providing, on a server, at least one
engine having an engine interface, and providing one or
more features to be executed. The computer implemented
process also includes the step of providing, on at least one
of the server and another server connectable to the server, at
least one engine component configured to execute the one or
more features of the engine by mapping a substantially
consistent interface to the engine interface of the engine. The
computer implemented process also includes the step of
providing, on a client configured to be connectable to the
server and optionally configured to be connectable to the
another server, an object manager layer communicable with
and managing the at least one engine component via the
substantially consistent interface.

In accordance with another embodiment of the invention,
an image viewer process views at least one document image
including an electronic document image, and performs

In accordance with another embodiment of the invention,
a computer architecture migrates at least one program spe­
cific Application Programmer Interface (API) from an origi­
nal state into a generic interface by building an object for
each engine. The object provides substantially uniform
access to the engine and engine settings associated with the
engine. The computer architecture includes an engine man­
agement layer interfacing with the program specific API and
providing engine management and administration, an engine
configuration layer transforming API calls received from the
program specific API into standardized calls, and an engine
layer managing the standardized calls for each engine.

35 viewing operations to the electronic document image. The
process includes the step of selecting, by the user, one of a
plurality of image viewing perspectives. Each of the plural­
ity of image viewing perspectives provide the user the
capability of viewing the document image in accordance

40 with a different predefined user perspective. The process
also includes the steps of selecting, by the user, using the
image viewer process the document image to be viewed, and
retrieving, by the image viewer process, the document
image. The process also includes the step of displaying, by

In accordance with another embodiment of the invention,

45 the image viewer process, the selected document image in
accordance with an image viewing perspective selected by
the user.

an engine management layer configures a computer archi­
tecture to perform one or more computer implemented or
computer assisted operations. The computer operations 50

include one or more of loading and unloading engine
dynamic link libraries into and out of memory for each
engine, mapping at least one engine function to at least one
corresponding engine object, providing general error detec­
tion and error correction for each engine, determining and 55

matching arguments and returning values for mapping the at
least one engine function to the at least one corresponding
engine object, and/or managing error feedback from the at
least one program specific API.

In accordance with another embodiment of the invention, 60

a distributed computer system migrates a program specific
Application Programmer Interface (API) from an original
state into a generic interface by building an object for each
engine. The object provides substantially uniform access to
the engine and engine settings associated with the engine. 65

The distributed computer system includes a server config­
ured to include at least one engine having an engine interface

In accordance with another embodiment of the invention,
a computer readable tangible medium is provided that stores
the process thereon, for execution by the computer.

A computer data management system includes at least one
of an electronic image, graphics and document management
system capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a
plurality of external destinations including one or more of
external devices and applications. The computer data man-
agement system is responsively connectable at least one of
locally and via the Internet, and includes at least one
memory storing a plurality of interface protocols for inter­
facing and communicating, and at least one processor
responsively connectable to the at least one memory. The
processor implements the plurality of interface protocols as
a software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 52 of 90

US 6,771,381 B1
13

one embodiment, the computer data management system
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
Internet. In one embodiment, the computer data manage­
ment system includes the capability to integrate the elec­
tronic images into a destination application without the need
to modify the destination application.

In one embodiment, the computer data management sys­
tem includes an interface that enables copying images
between physical devices, applications, and the Internet
using a single "GO" operation. In one embodiment, the
computer data management system includes the capability
of adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, the software application includes at
least one input module managing data comprising at least
one of paper and electronic paper input to the computer data
management system, and managing at least one imaging
device to input the data through at least one of a scanner and
a digital copier, and managing the electronic paper from at
least one third-party software applications; at least one
output module managing the data output from the computer
data management system, managing at least one imaging
device to output the data to at least one of a standard
Windows printer, an image printer, and a digital copier, and
managing the output of the data to the third-party software
application; at least one process module applying at least
one data processing to the data comprising the at least one
of the paper and the electronic paper as it is being copied,
applying additional functionality including at least one of
workflow and processing functionality to the data compris­
ing the at least one of paper and electronic paper as it is
being copied, and applying multiple processes to a single
virtual copy; at least one client module presenting the data
comprising the at least one of paper and electronic paper as
it is being copied, and information related to at least one of
the input and output functions; and at least one server
module communicable with said at least one input, output,
client, and process modules and external applications, and
capable of dynamically combining the external applications
with at least one of digital capturing devices and digital
imaging devices.

14
IN one mebodiment, the server module application program­
mer interface (API) comprises the COM-based interfaces: at
least one modules object maintaining a first list of available
input, output, and process modules; at least one program

5 object maintaining a second list of currently selected input,
output, and process modules; at least one document object
maintaining information regarding a current document being
copied; at least one system management method object used
to initiate, cancel, and reset said computer data management

10 system; and at least one system management event object
used to provide feedback to the Client Module.

In one embodiment, a computer data management system
includes at least one of an electronic image, graphics and
document management system capable of transmitting at

15 least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management system comprises:

20 a first capability to integrate an image using software so that
the image gets seamlessly replicated into at least one of other
devices and applications, and via the Internet; a second
capability to integrate electronic images into existing appli­
cations without the need to modify the destination applica-

25 tion; an interface comprising a software application that
enables copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and a third capability of adding at least one of electronic
document and paper processing with a single programming

30 step.
A computer data management system capable of manag­

ing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external

35 devices and applications at least one of locally and via the
Internet. The computer data management system includes at
least one memory storing at least one of a common and
universal interface protocol for interfacing and communi­
cating; and at least one processor responsively connectable

40 to said at least one memory, and implementing the at least
one common and universal interface protocol as a software
application for interfacing and communicating with the
plurality of external destinations including the one or more In one embodiment, one or more of the external devices

and applications integrates the computer data management
system into an external application via one of running the 45

computer data management system, as an external service
and embedding the computer data management system as an
embedded service.

of the external devices and applications.
In one embodiment, a computer readable tangible

medium stores instructions for implementing a process
driven by a computer implemented on at least one of an
electronic image, graphics and document management sys­
tem capable of managing and transmitting at least one of an In one embodiment, the server module includes enable

virtual copy operation means for initiating, canceling, and
resetting said computer data management system; maintain
list of available module means for maintaining a registry
containing a list of said input, output, and process modules
that can be used in said computer data management system,
said list being read on startup, and maintaining another copy
of said list in a modules object accessible by said input,
output, client, process and server modules; maintain cur­
rently active modules means for maintaining said input,
output, and process modules currently being used for a
current computer data management system copy operation
in a program object, and saving the currently active modules
in a process template file; and maintain complete document
information means for maintaining information regarding a
current file being copied, and saving the information in a
document template file.

In one embodiment, the server module includes at least
one server module application programmer interface (API).

50 electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of

55 a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement­
ing the at least one of common and universal interface
protocol as a software application via at least one processor
for interfacing and communicating with the plurality of

60 external destinations including the at least one external
device and application.

In one embodiment, a computer data management system
includes at least one of an electronic image, graphics and
document management system capable of transmitting at

65 least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 53 of 90

US 6,771,381 B1
15

responsively connectable at least one of locally and via the
Internet. The computer data management system includes a
single function copy operation linking devices, applications
and the Internet including at least one a go operation, a
single function paper copy between devices and software 5

applications, and a single function paper copy between
software applications and devices; a one step programming
method to add paper support to electronic business processes
including at least one of a one step method of supporting
paper within electronic business process application option- 10

ally including legacy systems with no or minimal repro­
gramming of the electronic business process application, a
method of recreating a module oriented copier in software;
and a copier interface implemented as software application
including at least one of a virtual copier interface method of 15

presenting to a user an operation of at least one of copying
files and electronic images, at least one of to and from, at
least one of digital imaging devices and software
applications, in a substantially single step, and presenting
users with direct access to at least one of tutorial and options 20

from a main application window.
In one embodiment, a server module includes enable

virtual copy operation means for initiating, canceling, and
resetting said computer data management system; maintain
list of available module means for maintaining a registry 25

containing a list of said input, output, and process modules
that can be used in said computer data management system,
said list being read on startup, and maintaining another copy
of said list in a modules object accessible by said input,
output, client, process and server modules; maintain cur- 30

rently active modules means for maintaining said input,
output, and process modules currently being used for a
current computer data management system copy operation
in a program object, and saving the currently active modules
in a process template file; and maintain complete document 35

information means for maintaining information regarding a
current file being copied, and saving the information in a
document template file.

16
ing a current file being copied, and saving the information in
a document template file.

A computer data administration system includes at least
one of an electronic image, graphics and document admin­
istration system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu-
ment to a plurality of external destinations including one or
more of external devices and applications. The computer
data administration system is responsively connectable at
least one of locally and via the Internet, and includes at least
one memory storing a plurality of interface protocols for
interfacing and communicating, and at least one processor
responsively connectable to the at least one memory. The
processor implements the plurality of interface protocols as
a software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data administration system
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
Internet. In one embodiment, the computer data administra­
tion system includes the capability to integrate the electronic
images into a destination application without the need to
modify the destination application.

In one embodiment, the computer data administration
system includes an interface that enables copying images
between physical devices, applications, and the Internet
using a single "GO" operation. In one embodiment, the
computer data administration system includes the capability
of adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, the software application includes at
least one input module managing data comprising at least
one of paper and electronic paper input to the computer data
administration system, and managing at least one imaging
device to input the data through at least one of a scanner and
a digital copier, and managing the electronic paper from at
least one third-party software applications; at least one
output module managing the data output from the computer
data administration system, managing at least one imaging
device to output the data to at least one of a standard
Windows printer, an image printer, and a digital copier, and
managing the output of the data to the third-party software
application; at least one process module applying at least
one data processing to the data comprising the at least one
of the paper and the electronic paper as it is being copied,
applying additional functionality including at least one of
workflow and processing functionality to the data compris­
ing the at least one of paper and electronic paper as it is
being copied, and applying multiple processes to a single
virtual copy; at least one client module presenting the data
comprising the at least one of paper and electronic paper as

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and 40

document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the 45

Internet. The method comprises the steps of integrating an
image using software so that the image gets seamlessly
replicated into at least one of other devices and applications,
and via the Internet; integrating electronic images into
existing applications without the need to modify the desti- 50

nation application; interfacing via a software application
enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes initiating,
canceling, and resetting said computer data management
system; maintaining a registry containing a list of said input,
output, and process modules that can be used in said
computer data management system, said list being read on 60

startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client,
process and server modules; maintaining said input, output,
and process modules currently being used for a current
computer data management system copy operation in a 65

program object, and saving the currently active modules in

55 it is being copied, and information related to at least one of
the input and output functions; and at least one server
module communicable with said at least one input, output,
client, and process modules and external applications, and

a process template file; and maintaining information regard-

capable of dynamically combining the external applications
with at least one of digital capturing devices and digital
imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer data administration
system into an external application via one of running the
computer data administration system, as an external service
and embedding the computer data administration system as
an embedded service.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 54 of 90

US 6,771,381 B1
17

In one embodiment, the server module includes enable
virtual copy operation means for initiating, canceling, and
resetting said computer data administration system; main­
tain list of available module means for maintaining a registry
containing a list of said input, output, and process modules
that can be used in said computer data administration
system, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by
said input, output, client, process and server modules; main­
tain currently active modules means for maintaining said
input, output, and process modules currently being used for
a current computer data administration system copy opera­
tion in a program object, and saving the currently active
modules in a process template file; and maintain complete
document information means for maintaining information
regarding a current file being copied, and saving the infor­
mation in a document template file.

In one embodiment, the server module includes at least
one server module application programmer interface (API).
IN one mebodiment, the server module application program­
mer interface (API) comprises the COM-based interfaces: at
least one modules object maintaining a first list of available
input, output, and process modules; at least one program
object maintaining a second list of currently selected input,
output, and process modules; at least one document object
maintaining information regarding a current document being
copied; at least one system administration method object
used to initiate, cancel, and reset said computer data admin­
istration system; and at least one system administration
event object used to provide feedback to the Client Module.

In one embodiment, a computer data administration sys­
tem includes at least one of an electronic image, graphics
and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data administration system com­
prises: a first capability to integrate an image using software
so that the image gets seamlessly replicated into at least one
of other devices and applications, and via the Internet; a
second capability to integrate electronic images into existing
applications without the need to modify the destination
application; an interface comprising a software application
that enables copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and a third capability of adding at least one of electronic
document and paper processing with a single programming
step.

A computer data administration system capable of man­
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data administration system includes
at least one memory storing at least one of a common and
universal interface protocol for interfacing and communi­
cating; and at least one processor responsively connectable
to said at least one memory, and implementing the at least
one common and universal interface protocol as a software
application for interfacing and communicating with the
plurality of external destinations including the one or more
of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an
electronic image, graphics and document administration

18
system capable of managing and transmitting at least one of
an electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including at least
one of an external device and application at least one of

5 locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement­
ing the at least one of common and universal interface

10 protocol as a software application via at least one processor
for interfacing and communicating with the plurality of
external destinations including the at least one external
device and application.

In one embodiment, a computer data administration sys-
15 tern includes at least one of an electronic image, graphics

and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications

20 responsively connectable at least one of locally and via the
Internet. The computer data administration system includes
a single function copy operation linking devices, applica­
tions and the Internet including at least one a go operation,
a single function paper copy between devices and software

25 applications, and a single function paper copy between
software applications and devices; a one step programming
method to add paper support to electronic business processes
including at least one of a one step method of supporting
paper within electronic business process application option-

3D ally including legacy systems with no or minimal repro­
gramming of the electronic business process application, a
method of recreating a module oriented copier in software;
and a copier interface implemented as software application
including at least one of a virtual copier interface method of

35 presenting to a user an operation of at least one of copying
files and electronic images, at least one of to and from, at
least one of digital imaging devices and software
applications, in a substantially single step, and presenting
users with direct access to at least one of tutorial and options

40 from a main application window.
In one embodiment, a server module includes enable

virtual copy operation means for initiating, canceling, and
resetting said computer data administration system; main­
tain list of available module means for maintaining a registry

45 containing a list of said input, output, and process modules
that can be used in said computer data administration
system, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by
said input, output, client, process and server modules; main-

50 tain currently active modules means for maintaining said
input, output, and process modules currently being used for
a current computer data administration system copy opera­
tion in a program object, and saving the currently active
modules in a process template file; and maintain complete

55 document information means for maintaining information
regarding a current file being copied, and saving the infor­
mation in a document template file.

In one embodiment, a computer data administration
method includes at least one of an electronic image, graphics

60 and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the

65 Internet. The method comprises the steps of integrating an
image using software so that the image gets seamlessly
replicated into at least one of other devices and applications,

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 55 of 90

US 6,771,381 B1
19

and via the Internet; integrating electronic images into
existing applications without the need to modify the desti­
nation application; interfacing via a software application
enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes initiating,
canceling, and resetting said computer data administration
system; maintaining a registry containing a list of said input,
output, and process modules that can be used in said
computer data administration system, said list being read on
startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client,
process and server modules; maintaining said input, output,
and process modules currently being used for a current
computer data administration system copy operation in a
program object, and saving the currently active modules in
a process template file; and maintaining information regard­
ing a current file being copied, and saving the information in
a document template file.

A computer information management system includes at
least one of an electronic image, graphics and document
management system capable of transmitting at least one of
an electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including one or
more of external devices and applications. The computer
information management system is responsively connect­
able at least one of locally and via the Internet, and includes
at least one storage storing a plurality of interface protocols
for interfacing and communicating, and at least one proces­
sor responsively connectable to the at least one storage. The
processor implements the plurality of interface protocols as
a software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer information management
system includes the capability to integrate an image using
software so that the image gets seamlessly replicated and
transmitted to at least one of other devices and applications,
and via the Internet. In one embodiment, the computer
information management system includes the capability to
integrate the electronic images into a destination application
without the need to modify the destination application.

In one embodiment, the computer information manage­
ment system includes an interface that enables copying
images between physical devices, applications, and the
Internet using a single "GO" operation. In one embodiment,
the computer information management system includes the
capability of adding at least one of electronic document and
paper processing with a single programming step.

In one embodiment, the software application includes at
least one input module managing information comprising at
least one of paper and electronic paper input to the computer
information management system, and managing at least one
imaging device to input the information through at least one
of a scanner and a digital copier, and managing the elec­
tronic paper from at least one third-party software applica­
tions; at least one output module managing the information
output from the computer information management system,
managing at least one imaging device to output the infor­
mation to at least one of a standard Windows printer, an
image printer, and a digital copier, and managing the output
of the information to the third-party software application; at
least one process module applying at least one information

20
processing to the information comprising the at least one of
the paper and the electronic paper as it is being copied,
applying additional functionality including at least one of
workflow and processing functionality to the information

5 comprising the at least one of paper and electronic paper as
it is being copied, and applying multiple processes to a
single virtual copy; at least one client module presenting the
information comprising the at least one of paper and elec­
tronic paper as it is being copied, and information related to

10 at least one of the input and output functions; and at least one
server module communicable with said at least one input,
output, client, and process modules and external
applications, and capable of dynamically combining the
external applications with at least one of digital capturing

15 devices and digital imaging devices.
In one embodiment, one or more of the external devices

and applications integrates the computer information man­
agement system into an external application via one of
running the computer information management system, as

20 an external service and embedding the computer information
management system as an embedded service.

In one embodiment, the server module includes enable
virtual copy operation means for initiating, canceling, and
resetting said computer information management system;

25 maintain list of available module means for maintaining a
registry containing a list of said input, output, and process
modules that can be used in said computer information
management system, said list being read on startup, and
maintaining another copy of said list in a modules object

30 accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer information management
system copy operation in a program object, and saving the

35 currently active modules in a process template file; and
maintain complete document information means for main­
taining information regarding a current file being copied,
and saving the information in a document template file.

In one mebodiment, the server module includes at least
40 one server module application programmer interface (API).

IN one mebodiment, the server module application program­
mer interface (API) comprises the COM-based interfaces: at
least one modules object maintaining a first list of available
input, output, and process modules; at least one program

45 object maintaining a second list of currently selected input,
output, and process modules; at least one document object
maintaining information regarding a current document being
copied; at least one system management method object used
to initiate, cancel, and reset said computer information

50 management system; and at least one system management
event object used to provide feedback to the Client Module.

In one embodiment, a computer information management
system includes at least one of an electronic image, graphics
and document management system capable of transmitting

55 at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer information management system

60 comprises: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the
Internet; a second capability to integrate electronic images
into existing applications without the need to modify the

65 destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the Internet using a single "GO"

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 56 of 90

US 6,771,381 B1
21

operation; and a third capability of adding at least one of
electronic document and paper processing with a single
programming step.

A computer information management system capable of
managing and transmitting at least one of an electronic 5

image, electronic graphics and electronic document to a
plurality of external destinations including one or more of
external devices and applications at least one of locally and
via the Internet. The computer information management
system includes at least one storage storing at least one of a 10

common and universal interface protocol for interfacing and
communicating; and at least one processor responsively
connectable to said at least one storage, and implementing
the at least one common and universal interface protocol as
a software application for interfacing and communicating 15

with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an 20

electronic image, graphics and document management sys­
tem capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including at least
one of an external device and application at least one of 25

locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one storage; and implement­
ing the at least one of common and universal interface 30

protocol as a software application via at least one processor
for interfacing and communicating with the plurality of
external destinations including the at least one external
device and application.

In one embodiment, a computer information management 35

system includes at least one of an electronic image, graphics
and document management system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications 40

responsively connectable at least one of locally and via the
Internet. The computer information management system
includes a single function copy operation linking devices,
applications and the Internet including at least one a go
operation, a single function paper copy between devices and 45

software applications, and a single function paper copy
between software applications and devices; a one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supporting paper within electronic business pro- 50

cess application optionally including legacy systems with no
or minimal reprogramming of the electronic business pro­
cess application, a method of recreating a module oriented
copier in software; and a copier interface implemented as
software application including at least one of a virtual copier 55

interface method of presenting to a user an operation of at
least one of copying files and electronic images, at least one
of to and from, at least one of digital imaging devices and
software applications, in a substantially single step, and
presenting users with direct access to at least one of tutorial 60

and options from a main application window.
In one embodiment, a server module includes enable

virtual copy operation means for initiating, canceling, and
resetting said computer information management system;
maintain list of available module means for maintaining a 65

registry containing a list of said input, output, and process
modules that can be used in said computer information

22
management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer information management
system copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main­
taining information regarding a current file being copied,
and saving the information in a document template file.

In one embodiment, a computer information management
method includes at least one of an electronic image, graphics
and document management system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises the steps of integrating an
image using software so that the image gets seamlessly
replicated into at least one of other devices and applications,
and via the Internet; integrating electronic images into
existing applications without the need to modify the desti­
nation application; interfacing via a software application
enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes initiating,
canceling, and resetting said computer information manage­
ment system; maintaining a registry containing a list of said
input, output, and process modules that can be used in said
computer information management system, said list being
read on startup, and maintaining another copy of said list in
a modules object accessible by said input, output, client,
process and server modules; maintaining said input, output,
and process modules currently being used for a current
computer information management system copy operation
in a program object, and saving the currently active modules
in a process template file; and maintaining information
regarding a current file being copied, and saving the infor­
mation in a document template file.

A computer data management system includes at least one
of an electronic image, graphics and document management
system capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a
plurality of external destinations including one or more of
external devices and applications. The computer data man­
agement system is responsively connectable at least one of
locally and via the Internet, and includes at least one
memory storing a plurality of interface protocols for inter­
facing and communicating, and at least one processor
responsively connectable to the at least one memory. The
processor implements at least one interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data management system
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
Internet. In one embodiment, the computer data manage­
ment system includes the capability to integrate the elec­
tronic images into a destination application without the need
to modify the destination application.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 57 of 90

US 6,771,381 B1
23

In one embodiment, the computer data management sys­
tem includes an optional interface that enables copying
images between physical devices, applications, and the
Internet using a single "GO" operation. In one embodiment,
the computer data management system includes the optional 5

capability of adding at least one of electronic document and
paper processing with a single programming step.

In one embodiment, the software application includes one
or more of: at least one input module managing data
comprising at least one of paper and electronic paper input 10

to the computer data management system, and managing at
least one imaging device to input the data through at least
one of a scanner and a digital copier, and managing the
electronic paper from at least one third-party software
applications; at least one output module managing the data 15

output from the computer data management system, man­
aging at least one imaging device to output the data to at
least one of a standard Windows printer, an image printer,
and a digital copier, and managing the output of the data to
the third-party software application; at least one process 20

module applying at least one data processing to the data
comprising the at least one of the paper and the electronic
paper as it is being copied, applying additional functionality
including at least one of workflow and processing function­
ality to the data comprising the at least one of paper and 25

electronic paper as it is being copied, and applying multiple
processes to a single virtual copy; at least one client module
presenting the data comprising the at least one of paper and
electronic paper as it is being copied, and information
related to at least one of the input and output functions; and 30

at least one server module communicable with said at least

24
regarding a current document being copied; at least one
system management method object used to initiate, cancel,
and reset said computer data management system; and at
least one system management event object used to provide
feedback to the Client Module.

In one embodiment, a computer data management system
includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management system comprises
one or more of: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the
Internet; a second capability to integrate electronic images
into existing applications without the need to modify the
destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the Internet using a single "GO"
operation; and a third capability of adding at least one of
electronic document and paper processing with a single
programming step.

A computer data management system capable of manag­
ing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data management system includes at
least one memory storing at least one of a common and
universal interface protocol for interfacing and communi­
cating; and at least one data processor responsively connect­
able to said at least one memory, and implementing the at

one input, output, client, and process modules and external
applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer data management
system into an external application via at least one of
running the computer data management system, as an exter­
nal service and embedding the computer data management
system as an embedded service.

35 least one common and universal interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, a computer readable tangible
40 medium stores instructions for implementing a process

driven by a computer implemented on at least one of an
electronic image, graphics and document management sys­
tem capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu-

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
system; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data
management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer data management system
copy operation in a program object, and saving the currently
active modules in a process template file; and maintain 55

complete document information means for maintaining
information regarding a current file being copied, and saving
the information in a document template file.

45 ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing

50 and communicating in at least one memory; and implement­
ing the at least one of common and universal interface
protocol interfacing and communicating with the plurality of
external destinations.

In one embodiment, the server module includes at least
one server module application programmer interface (API). 60

In one embodiment, the server module application program­
mer interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object main­
taining a first list of available input, output, and process
modules; at least one program object maintaining a second 65

list of currently selected input, output, and process modules;

In one embodiment, a computer data management system
includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management system includes
one or more of: a single function copy operation linking
devices, applications and the Internet including at least one
a go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step

at least one document object maintaining information programming method to add paper support to electronic

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 58 of 90

US 6,771,381 B1
25

business processes including at least one of a one step
method of supporting paper within electronic business pro­
cess application optionally including legacy systems with no

26
data administration system is responsively connectable at
least one of locally and via the Internet, and includes at least
one memory storing a plurality of interface protocols for
interfacing and communicating, and at least one processor or minimal reprogramming of the electronic business pro­

cess application, a method of recreating a module oriented
copier in software; and a copier interface implemented as
software application including at least one of a virtual copier
interface method of presenting to a user an operation of at
least one of copying files and electronic images, at least one

5 responsively connectable to the at least one memory. The
processor implements at least one interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one

of to and from, at least one of digital imaging devices and 10

software applications, in a substantially single step, and
presenting users with direct access to at least one of tutorial
and options from a main application window.

In one embodiment, a server module includes one or more

or more of the external devices and applications.
In one embodiment, the external devices and applications

include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data administration system
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted

15 to at least one of other devices and applications, and via the
Internet. In one embodiment, the computer data administra­
tion system includes the capability to integrate the electronic
images into a destination application without the need to

of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
system; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data
management system, said list being read on startup, and 20

maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer data management system
copy operation in a program object, and saving the currently
active modules in a process template file; and maintain
complete document information means for maintaining
information regarding a current file being copied, and saving
the information in a document template file.

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli­
cation enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes one or more
of: initiating, canceling, and resetting said computer data
management system; maintaining a registry containing a list
of said input, output, and process modules that can be used
in said computer data management system, said list being
read on startup, and maintaining another copy of said list in

modify the destination application.
In one embodiment, the computer data administration

system includes an optional interface that enables copying
images between physical devices, applications, and the
Internet using a single "GO" operation. In one embodiment,
the computer data administration system includes the

25 optional capability of adding at least one of electronic
document and paper processing with a single programming
step.

In one embodiment, the software application includes one
or more of: at least one input module managing data

30 comprising at least one of paper and electronic paper input
to the computer data administration system, and managing at
least one imaging device to input the data through at least
one of a scanner and a digital copier, and managing the
electronic paper from at least one third-party software

35 applications; at least one output module managing the data
output from the computer data administration system, man­
aging at least one imaging device to output the data to at
least one of a standard Windows printer, an image printer,
and a digital copier, and managing the output of the data to

40 the third-party software application; at least one process
module applying at least one data processing to the data
comprising the at least one of the paper and the electronic
paper as it is being copied, applying additional functionality
including at least one of workflow and processing function-

45 ality to the data comprising the at least one of paper and
electronic paper as it is being copied, and applying multiple
processes to a single virtual copy; at least one client module
presenting the data comprising the at least one of paper and
electronic paper as it is being copied, and information

50 related to at least one of the input and output functions; and
at least one server module communicable with said at least

a modules object accessible by said input, output, client,
process and server modules; maintaining said input, output, 55

and process modules currently being used for a current
computer data management system copy operation in a
program object, and saving the currently active modules in

one input, output, client, and process modules and external
applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer data administration
system into an external application via at least one of
running the computer data administration system, as an
external service and embedding the computer data admin­
istration system as an embedded service.

a process template file; and maintaining information regard­
ing a current file being copied, and saving the information in 60

a document template file.
A computer data administration system includes at least

one of an electronic image, graphics and document admin­
istration system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu- 65

ment to a plurality of external destinations including one or
more of external devices and applications. The computer

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data administration
system; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 59 of 90

US 6,771,381 B1
27 28

administration system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently 5

being used for a current computer data administration sys­
tem copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main­
taining information regarding a current file being copied, 10

and saving the information in a document template file.

computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement-
ing the at least one of common and universal interface
protocol interfacing and communicating with the plurality of
external destinations.

In one embodiment, a computer data administration sys-
tem includes at least one of an electronic image, graphics
and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations

In one embodiment, the server module includes at least
one server module application programmer interface (API).
In one embodiment, the server module application program­
mer interface (API) comprises one or more of the following 15

COM-based interfaces: at least one modules object main­
taining a first list of available input, output, and process
modules; at least one program object maintaining a second
list of currently selected input, output, and process modules;

including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data administration system includes
one or more of: a single function copy operation linking
devices, applications and the Internet including at least one
a go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supporting paper within electronic business pro­
cess application optionally including legacy systems with no
or minimal reprogramming of the electronic business pro-

at least one document object maintaining information 20

regarding a current document being copied; at least one
system administration method object used to initiate, cancel,
and reset said computer data administration system; and at
least one system administration event object used to provide
feedback to the Client Module. 25 cess application, a method of recreating a module oriented

copier in software; and a copier interface implemented as
software application including at least one of a virtual copier
interface method of presenting to a user an operation of at
least one of copying files and electronic images, at least one

In one embodiment, a computer data administration sys­
tem includes at least one of an electronic image, graphics
and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data administration system com­
prises one or more of: a first capability to integrate an image
using software so that the image gets seamlessly replicated
into at least one of other devices and applications, and via
the Internet; a second capability to integrate electronic
images into existing applications without the need to modify
the destination application; an interface comprising a soft­
ware application that enables copying images between
physical devices, applications, and the Internet using a
single "GO" operation; and a third capability of adding at
least one of electronic document and paper processing with
a single programming step.

A computer data administration system capable of man­
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data administration system includes
at least one memory storing at least one of a common and
universal interface protocol for interfacing and communi­
cating; and at least one data processor responsively connect­
able to said at least one memory, and implementing the at
least one common and universal interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an
electronic image, graphics and document administration
system capable of managing and transmitting at least one of
an electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the

30 of to and from, at least one of digital imaging devices and
software applications, in a substantially single step, and
presenting users with direct access to at least one of tutorial
and options from a main application window.

In one embodiment, a server module includes one or more
35 of: enable virtual copy operation means for initiating,

canceling, and resetting said computer data administration
system; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data

40 administration system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently

45 being used for a current computer data administration sys­
tem copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main­
taining information regarding a current file being copied,

50 and saving the information in a document template file.
In one embodiment, a computer data administration

method includes at least one of an electronic image, graphics
and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and

55 electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets

60 seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli­
cation enabling copying images between physical devices,

65 applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 60 of 90

US 6,771,381 B1
29

In one embodiment, a server method includes one or more
of: initiating, canceling, and resetting said computer data
administration system; maintaining a registry containing a
list of said input, output, and process modules that can be
used in said computer data administration system, said list 5

being read on startup, and maintaining another copy of said
list in a modules object accessible by said input, output,
client, process and server modules; maintaining said input,
output, and process modules currently being used for a
current computer data administration system copy operation 10

in a program object, and saving the currently active modules
in a process template file; and maintaining information
regarding a current file being copied, and saving the infor­
mation in a document template file.

A workstation data management system includes at least 15

one of an electronic image, graphics and document man­
agement system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including one or
more of external devices and applications. The workstation 20

data management system is responsively connectable at least
one of locally and via the Internet, and includes at least one
memory storing a plurality of interface protocols for inter­
facing and communicating, and at least one processor
responsively connectable to the at least one memory. The 25

processor implements at least one interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, the external devices and applications 30

include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the workstation data management system
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the 35

Internet. In one embodiment, the workstation data manage­
ment system includes the capability to integrate the elec­
tronic images into a destination application without the need
to modify the destination application.

In one embodiment, the workstation data management 40

system includes an optional interface that enables copying
images between physical devices, applications, and the
Internet using a single "GO" operation. In one embodiment,
the workstation data management system includes the
optional capability of adding at least one of electronic 45

document and paper processing with a single programming
step.

In one embodiment, the software application includes one
or more of: at least one input module managing data
comprising at least one of paper and electronic paper input 50

to the workstation data management system, and managing
at least one imaging device to input the data through at least
one of a scanner and a digital copier, and managing the
electronic paper from at least one third-party software
applications; at least one output module managing the data 55

output from the workstation data management system, man­
aging at least one imaging device to output the data to at
least one of a standard Windows printer, an image printer,
and a digital copier, and managing the output of the data to
the third-party software application; at least one process 60

module applying at least one data processing to the data
comprising the at least one of the paper and the electronic
paper as it is being copied, applying additional functionality
including at least one of workflow and processing function­
ality to the data comprising the at least one of paper and 65

electronic paper as it is being copied, and applying multiple
processes to a single virtual copy; at least one client module

30
presenting the data comprising the at least one of paper and
electronic paper as it is being copied, and information
related to at least one of the input and output functions; and
at least one server module communicable with said at least
one input, output, client, and process modules and external
applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the workstation data manage­
ment system into an external application via at least one of
running the workstation data management system, as an
external service and embedding the workstation data man­
agement system as an embedded service.

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said workstation data management
system; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said workstation data
management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current workstation data management
system copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main­
taining information regarding a current file being copied,
and saving the information in a document template file.

In one embodiment, the server module includes at least
one server module application programmer interface (API).
In one embodiment, the server module application program­
mer interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object main­
taining a first list of available input, output, and process
modules; at least one program object maintaining a second
list of currently selected input, output, and process modules;
at least one document object maintaining information
regarding a current document being copied; at least one
system management method object used to initiate, cancel,
and reset said workstation data management system; and at
least one system management event object used to provide
feedback to the Client Module.

In one embodiment, a workstation data management
system includes at least one of an electronic image, graphics
and document management system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The workstation data management system com­
prises one or more of: a first capability to integrate an image
using software so that the image gets seamlessly replicated
into at least one of other devices and applications, and via
the Internet; a second capability to integrate electronic
images into existing applications without the need to modify
the destination application; an interface comprising a soft­
ware application that enables copying images between
physical devices, applications, and the Internet using a
single "GO" operation; and a third capability of adding at
least one of electronic document and paper processing with
a single programming step.

A workstation data management system capable of man­
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 61 of 90

US 6,771,381 B1
31

external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The workstation data management system includes
at least one memory storing at least one of a common and
universal interface protocol for interfacing and communi­
cating; and at least one data processor responsively connect­
able to said at least one memory, and implementing the at
least one common and universal interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, a workstation readable tangible
medium stores instructions for implementing a process
driven by a workstation implemented on at least one of an
electronic image, graphics and document management sys­
tem capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
workstation to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement­
ing the at least one of common and universal interface
protocol interfacing and communicating with the plurality of
external destinations.

In one embodiment, a workstation data management
system includes at least one of an electronic image, graphics
and document management system capable of transmitting

32
maintain complete document information means for main­
taining information regarding a current file being copied,
and saving the information in a document template file.

In one embodiment, a workstation data management
5 method includes at least one of an electronic image, graphics

and document management system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications

10 responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic

15 images into existing applications without the need to modify
the destination application; interfacing via a software appli­
cation enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper

20 processing with a single programming step.
In one embodiment, a server method includes one or more

of: initiating, canceling, and resetting said workstation data
management system; maintaining a registry containing a list
of said input, output, and process modules that can be used

25 in said workstation data management system, said list being
read on startup, and maintaining another copy of said list in
a modules object accessible by said input, output, client,
process and server modules; maintaining said input, output,
and process modules currently being used for a current

30 workstation data management system copy operation in a
program object, and saving the currently active modules in
a process template file; and maintaining information regard­
ing a current file being copied, and saving the information in

at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The workstation data management system includes
one or more of: a single function copy operation linking 35

devices, applications and the Internet including at least one

a document template file.
A computer data management apparatus includes at least

one of an electronic image, graphics and document man­
agement apparatus capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including one or

a go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supporting paper within electronic business pro­
cess application optionally including legacy systems with no
or minimal reprogramming of the electronic business pro­
cess application, a method of recreating a module oriented
copier in software; and a copier interface implemented as
software application including at least one of a virtual copier
interface method of presenting to a user an operation of at
least one of copying files and electronic images, at least one

40 more of external devices and applications. The computer
data management apparatus is responsively connectable at
least one of locally and via the Internet, and includes at least
one memory storing a plurality of interface protocols for
interfacing and communicating, and at least one processor

45 responsively connectable to the at least one memory. The
processor implements at least one interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one

of to and from, at least one of digital imaging devices and 50

software applications, in a substantially single step, and
presenting users with direct access to at least one of tutorial
and options from a main application window.

In one embodiment, a server module includes one or more

or more of the external devices and applications.
In one embodiment, the external devices and applications

include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data management apparatus
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted

55 to at least one of other devices and applications, and via the
Internet. In one embodiment, the computer data manage­
ment apparatus includes the capability to integrate the
electronic images into a destination application without the

of: enable virtual copy operation means for initiating,
canceling, and resetting said workstation data management
system; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said workstation data
management system, said list being read on startup, and 60

maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current workstation data management
system copy operation in a program object, and saving the
currently active modules in a process template file; and

need to modify the destination application.
In one embodiment, the computer data management appa-

ratus includes an optional interface that enables copying
images between physical devices, applications, and the
Internet using a single "GO" operation. In one embodiment,
the computer data management apparatus includes the

65 optional capability of adding at least one of electronic
document and paper processing with a single programming
step.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 62 of 90

US 6,771,381 B1
33

In one embodiment, the software application includes one
or more of: at least one input module managing data
comprising at least one of paper and electronic paper input
to the computer data management apparatus, and managing
at least one imaging device to input the data through at least
one of a scanner and a digital copier, and managing the
electronic paper from at least one third-party software
applications; at least one output module managing the data
output from the computer data management apparatus, man­
aging at least one imaging device to output the data to at
least one of a standard Windows printer, an image printer,
and a digital copier, and managing the output of the data to
the third-party software application; at least one process
module applying at least one data processing to the data
comprising the at least one of the paper and the electronic
paper as it is being copied, applying additional functionality
including at least one of workflow and processing function­
ality to the data comprising the at least one of paper and
electronic paper as it is being copied, and applying multiple
processes to a single virtual copy; at least one client module
presenting the data comprising the at least one of paper and
electronic paper as it is being copied, and information
related to at least one of the input and output functions; and
at least one server module communicable with said at least
one input, output, client, and process modules and external
applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer data management
apparatus into an external application via at least one of
running the computer data management apparatus, as an
external service and embedding the computer data manage­
ment apparatus as an embedded service.

34
and document management apparatus capable of transmit­
ting at least one of an electronic image, electronic graphics
and electronic document to a plurality of external destin a­
tions including one or more of external devices and appli-

5 cations responsively connectable at least one of locally and
via the Internet. The computer data management apparatus
comprises one or more of: a first capability to integrate an
image using software so that the image gets seamlessly
replicated into at least one of other devices and applications,

10 and via the Internet; a second capability to integrate elec­
tronic images into existing applications without the need to
modify the destination application; an interface comprising
a software application that enables copying images between
physical devices, applications, and the Internet using a

15 single "GO" operation; and a third capability of adding at
least one of electronic document and paper processing with
a single programming step.

A computer data management apparatus capable of man­
aging and transmitting at least one of an electronic image,

20 electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data management apparatus includes
at least one memory storing at least one of a common and

25 universal interface protocol for interfacing and communi­
cating; and at least one data processor responsively connect­
able to said at least one memory, and implementing the at
least one common and universal interface protocol as a
software application for interfacing and communicating

30 with the plurality of external destinations including the one
or more of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an

35 electronic image, graphics and document management appa­
ratus capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including at least
one of an external device and application at least one of

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
apparatus; maintain list of available module means for
maintaining a registry containing a list of said input, output,
and process modules that can be used in said computer data
management apparatus, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer data management appa­
ratus copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main­
taining information regarding a current file being copied, 50

and saving the information in a document template file.

40 locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement­
ing the at least one of common and universal interface

45 protocol interfacing and communicating with the plurality of
external destinations.

In one embodiment, a computer data management appa-
ratus includes at least one of an electronic image, graphics
and document management apparatus capable of transmit­
ting at least one of an electronic image, electronic graphics
and electronic document to a plurality of external destin a-

In one embodiment, the server module includes at least
one server module application programmer interface (API).
In one embodiment, the server module application program­
mer interface (API) comprises one or more of the following 55

COM-based interfaces: at least one modules object main­
taining a first list of available input, output, and process
modules; at least one program object maintaining a second
list of currently selected input, output, and process modules;

tions including one or more of external devices and appli­
cations responsively connectable at least one of locally and
via the Internet. The computer data management apparatus
includes one or more of: a single function copy operation
linking devices, applications and the Internet including at
least one a go operation, a single function paper copy
between devices and software applications, and a single
function paper copy between software applications and
devices; a one step programming method to add paper
support to electronic business processes including at least
one of a one step method of supporting paper within
electronic business process application optionally including
legacy apparatus with no or minimal reprogramming of the

at least one document object maintaining information 60

regarding a current document being copied; at least one
apparatus management method object used to initiate,
cancel, and reset said computer data management apparatus;
and at least one apparatus management event object used to
provide feedback to the Client Module. 65 electronic business process application, a method of recre­

ating a module oriented copier in software; and a copier
interface implemented as software application including at

In one embodiment, a computer data management appa­
ratus includes at least one of an electronic image, graphics

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 63 of 90

US 6,771,381 B1
35

least one of a virtual copier interface method of presenting
to a user an operation of at least one of copying files and
electronic images, at least one of to and from, at least one of
digital imaging devices and software applications, in a
substantially single step, and presenting users with direct
access to at least one of tutorial and options from a main
application window.

In one embodiment, a server module includes one or more
of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
apparatus; maintain list of available module means for
maintaining a registry containing a list of said input, output,
and process modules that can be used in said computer data
management apparatus, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer data management appa­
ratus copy operation in a program object, and saving the
currently active modules in a process template file; and
maintain complete document information means for main­
taining information regarding a current file being copied,
and saving the information in a document template file.

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management apparatus capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli­
cation enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes one or more
of: initiating, canceling, and resetting said computer data
management apparatus; maintaining a registry containing a
list of said input, output, and process modules that can be
used in said computer data management apparatus, said list
being read on startup, and maintaining another copy of said
list in a modules object accessible by said input, output,
client, process and server modules; maintaining said input,
output, and process modules currently being used for a
current computer data management apparatus copy opera­
tion in a program object, and saving the currently active
modules in a process template file; and maintaining infor­
mation regarding a current file being copied, and saving the
information in a document template file.

A computer data management device includes at least one

36
a software application for communicating and communicat­
ing with the plurality of external destinations including the
one or more of the external devices and applications.

In one embodiment, the external devices and applications
5 include, for example, a printer, a facsimile, and a scanner. In

one embodiment, the computer data management device
includes the capability to integrate an image using software
so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the

10 Internet. In one embodiment, the computer data manage­
ment device includes the capability to integrate the elec­
tronic images into a destination application without the need
to modify the destination application.

In one embodiment, the computer data management
15 device includes an optional interface that enables copying

images between physical devices, applications, and the
Internet using a single "GO" action. In one embodiment, the
computer data management device includes the optional
capability of adding at least one of electronic document and

20 paper processing with a single programming step.
In one embodiment, the software application includes one

or more of: at least one input module managing data
comprising at least one of paper and electronic paper input
to the computer data management device, and managing at

25 least one imaging device to input the data through at least
one of a scanner and a digital copier, and managing the
electronic paper from at least one third-party software
applications; at least one output module managing the data
output from the computer data management device, manag-

30 ing at least one imaging device to output the data to at least
one of a standard Windows printer, an image printer, and a
digital copier, and managing the output of the data to the
third-party software application; at least one process module
applying at least one data processing to the data comprising

35 the at least one of the paper and the electronic paper as it is
being copied, applying additional functionality including at
least one of workflow and processing functionality to the
data comprising the at least one of paper and electronic
paper as it is being copied, and applying multiple processes

40 to a single virtual copy; at least one client module presenting
the data comprising the at least one of paper and electronic
paper as it is being copied, and information related to at least
one of the input and output functions; and at least one server
module communicable with said at least one input, output,

45 client, and process modules and external applications, and
capable of dynamically combining the external applications
with at least one of digital capturing devices and digital
imaging devices.

In one embodiment, one or more of the external devices
50 and applications integrates the computer data management

device into an external application via at least one of running
the computer data management device, as an external ser­
vice and embedding the computer data management device
as an embedded service.

55

of an electronic image, graphics and document management
device capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a
plurality of external destinations including one or more of 60

external devices and applications. The computer data man­
agement device is responsively connectable at least one of
locally and via the Internet, and includes at least one
memory storing a plurality of interface procedures for
communicating and communicating, and at least one pro- 65

cessor responsively connectable to the at least one memory.
The processor implements at least one interface procedure as

In one embodiment, the server module includes one or
more of: enable virtual copy action means for initiating,
canceling, and resetting said computer data management
device; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data
management device, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer data management device
copy action in a program object, and saving the currently

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 64 of 90

US 6,771,381 B1
37

active modules in a process template file; and maintain
complete document information means for maintaining
information regarding a current file being copied, and saving
the information in a document template file.

In one embodiment, the server module includes at least
one server module application programmer interface (API).
In one embodiment, the server module application program­
mer interface (API) comprises one or more of the following
COM-based interfaces: at least one modules is object main­
taining a first list of available input, output, and process
modules; at least one program object maintaining a second
list of currently selected input, output, and process modules;
at least one document object maintaining information
regarding a current document being copied; at least one
device management method object used to initiate, cancel,
and reset said computer data management device; and at
least one device management event object used to provide
feedback to the Client Module.

In one embodiment, a computer data management device
includes at least one of an electronic image, graphics and
document management device capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management device comprises
one or more of: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the
Internet; a second capability to integrate electronic images
into existing applications without the need to modify the
destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the Internet using a single "GO"
action; and a third capability of adding at least one of
electronic document and paper processing with a single
programming step.

A computer data management device capable of manag­
ing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data management device includes at
least one memory storing at least one of a common and
universal interface procedure for communicating and com­
municating; and at least one data processor responsively
connectable to said at least one memory, and implementing
the at least one common and universal interface procedure as
a software application for communicating and communicat­
ing with the plurality of external destinations including the
one or more of the external devices and applications.

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an
electronic image, graphics and document management
device capable of managing and transmitting at least one of

38
document management device capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications

5 responsively connectable at least one of locally and via the
Internet. The computer data management device includes
one or more of: a single function copy action linking
devices, applications and the Internet including at least one
a go action, a single function paper copy between devices

10 and software applications, and a single function paper copy
between software applications and devices; a one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supporting paper within electronic business pro-

15 cess application optionally including legacy devices with no
or minimal reprogramming of the electronic business pro­
cess application, a method of recreating a module oriented
copier in software; and a copier interface implemented as
software application including at least one of a virtual copier

20 interface method of presenting to a user an action of at least
one of copying files and electronic images, at least one of to
and from, at least one of digital imaging devices and
software applications, in a substantially single step, and
presenting users with direct access to at least one of tutorial

25 and options from a main application window.
In one embodiment, a server module includes one or more

of: enable virtual copy action means for initiating, canceling,
and resetting said computer data management device; main­
tain list of available module means for maintaining a registry

30 containing a list of said input, output, and process modules
that can be used in said computer data management device,
said list being read on startup, and maintaining another copy
of said list in a modules object accessible by said input,
output, client, process and server modules; maintain cur-

35 rently active modules means for maintaining said input,
output, and process modules currently being used for a
current computer data management device copy action in a
program object, and saving the currently active modules in
a process template file; and maintain complete document

40 information means for maintaining information regarding a
current file being copied, and saving the information in a
document template file.

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and

45 document management device capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the

50 Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify

55 the destination application; communicating via a software
application enabling copying images between physical
devices, applications, and the Internet using a single "GO"
action; and adding at least one of electronic document and

an electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of 60

a common and universal interface procedure for communi­
cating and communicating in at least one memory; and
implementing the at least one of common and universal
interface procedure communicating and communicating
with the plurality of external destinations.

paper processing with a single programming step.
In one embodiment, a server method includes one or more

of: initiating, canceling, and resetting said computer data
management device; maintaining a registry containing a list
of said input, output, and process modules that can be used
in said computer data management device, said list being

65 read on startup, and maintaining another copy of said list in
a modules object accessible by said input, output, client,
process and server modules; maintaining said input, output,

In one embodiment, a computer data management device
includes at least one of an electronic image, graphics and

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 65 of 90

US 6,771,381 B1
39

and process modules currently being used for a current
computer data management device copy action in a program
object, and saving the currently active modules in a process
template file; and maintaining information regarding a cur­
rent file being copied, and saving the information in a 5

document template file.
A computer data management method includes at least

one of an electronic image, graphics and document man­
agement method capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu- 10

ment to a plurality of external destinations including one or
more of external devices and applications. The computer
data management method is connectable at least one of
locally and via the Internet, and accesses at least one
memory storing a plurality of interface protocols for inter- 15

facing and communicating, and at least one processor
responsively connectable to the at least one memory. The
processor implements at least one interface protocol as a
software application for interfacing and communicating
with the plurality of external destinations including the one 20

or more of the external devices and applications.
In one embodiment, the external devices and applications

include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data management method
includes the capability to integrate an image using software 25

so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
Internet. In one embodiment, the computer data manage­
ment method includes the capability to integrate the elec­
tronic images into a destination application without the need 30

to modify the destination application.
In one embodiment, the computer data management

method includes an optional interface that enables copying
images between physical devices, applications, and the
Internet using a single "GO" operation. In one embodiment, 35

the computer data management method includes the optional
capability of adding at least one of electronic document and
paper processing with a single programming step.

In one embodiment, the software application includes one
or more of: managing data comprising at least one of paper 40

and electronic paper input to the computer data management
method, and managing at least one imaging device to input
the data through at least one of a scanner and a digital copier,
and managing the electronic paper from at least one third­
party software applications; managing the data output from 45

the computer data management method, managing at least
one imaging device to output the data to at least one of a
standard Windows printer, an image printer, and a digital
copier, and managing the output of the data to the third-party
software application; applying at least one data processing to 50

the data comprising the at least one of the paper and the
electronic paper as it is being copied, applying additional
functionality including at least one of workflow and pro­
cessing functionality to the data comprising the at least one
of paper and electronic paper as it is being copied, and 55

applying multiple processes to a single virtual copy; pre­
senting the data comprising the at least one of paper and
electronic paper as it is being copied, and information
related to at least one of the input and output functions; and
communicable with said at least one input, output, client, 60

and process modules and external applications, and capable
of dynamically combining the external applications with at
least one of digital capturing devices and digital imaging
devices.

40
running the computer data management method, as an
external service and embedding the computer data manage­
ment method as an embedded service.

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
method; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data
management method, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer data management method
copy operation in a program object, and saving the currently
active modules in a process template file; and maintain
complete document information means for maintaining
information regarding a current file being copied, and saving
the information in a document template file.

In one embodiment, the server module includes at least
one server module application programmer interface (API).
In one embodiment, the server module application program­
mer interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object main­
taining a first list of available input, output, and process
modules; at least one program object maintaining a second
list of currently selected input, output, and process modules;
at least one document object maintaining information
regarding a current document being copied; at least one
method management method object used to initiate, cancel,
and reset said computer data management method; and at
least one method management event object used to provide
feedback to the Client Module.

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management method capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management method comprises
one or more of: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the
Internet; a second capability to integrate electronic images
into existing applications without the need to modify the
destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the Internet using a single "GO"
operation; and a third capability of adding at least one of
electronic document and paper processing with a single
programming step.

A computer data management method capable of manag­
ing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data management method includes at
least one memory storing at least one of a common and
universal interface protocol for interfacing and communi-
cating; and at least one data processor responsively connect­
able to said at least one memory, and implementing the at
least one common and universal interface protocol as a

In one embodiment, one or more of the external devices
and applications integrates the computer data management
method into an external application via at least one of

65 software application for interfacing and communicating
with the plurality of external destinations including the one
or more of the external devices and applications.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 66 of 90

US 6,771,381 B1
41 42

integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the

Internet; integrating electronic images into existing appli-

In one embodiment, a computer readable tangible
medium stores instructions for implementing a process
driven by a computer implemented on at least one of an
electronic image, graphics and document management
method capable of managing and transmitting at least one of
an electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the
computer to perform the process of: storing at least one of
a common and universal interface protocol for interfacing
and communicating in at least one memory; and implement­
ing the at least one of common and universal interface
protocol interfacing and communicating with the plurality of
external destinations.

5 cations without the need to modify the destination applica­
tion; interfacing via a software application enabling copying
images between physical devices, applications, and the
Internet using a single "GO" operation; and adding at least
one of electronic document and paper processing with a

10 single programming step.
In one embodiment, a server method includes one or more

of: initiating, canceling, and resetting said computer data
management method; maintaining a registry containing a list
of said input, output, and process modules that can be used

15 in said computer data management method, said list being
read on startup, and maintaining another copy of said list in
a modules object accessible by said input, output, client,
process and server modules; maintaining said input, output,
and process modules currently being used for a current

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management method capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management method includes
one or more of: a single function copy operation linking
devices, applications and the Internet including at least one 25

a go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step
programming method to add paper support to electronic
business processes including at least one of a one step
method of supporting paper within electronic business pro­
cess application optionally including legacy methods with
no or minimal reprogramming of the electronic business
process application, a method of recreating a module ori­
ented copier in software; and a copier interface implemented
as software application including at least one of a virtual
copier interface method of presenting to a user an operation
of at least one of copying files and electronic images, at least
one of to and from, at least one of digital imaging devices
and software applications, in a substantially single step, and
presenting users with direct access to at least one of tutorial
and options from a main application window.

In one embodiment, a server module includes one or more

20 computer data management method copy operation in a
program object, and saving the currently active modules in
a process template file; and maintaining information regard­
ing a current file being copied, and saving the information in
a document template file.

In accordance with another embodiment of the invention,
a computer readable tangible medium is provided that stores
an object thereon, for execution by the computer.

There has thus been outlined, rather broadly, the more
important features of the invention in order that the detailed

30 description thereof that follows may be better understood,
and in order that the present contribution to the art may be
better appreciated. There are, of course, additional features
of the invention that will be described hereinafter and which
will form the subject matter of the claims appended hereto.

35 In this respect, before explaining at least one embodiment of
the invention in detail, it is to be understood that the
invention is not limited in its application to the details of
construction and to the arrangements of the components set
forth in the following description or illustrated in the draw-

40 ings. The invention is capable of other embodiments and of
being practiced and carried out in various ways. Also, it is
to be understood that the phraseology and terminology
employed herein are for the purpose of description and
should not be regarded as limiting.

As such, those skilled in the art will appreciate that the
conception, upon which this disclosure is based, may readily
be utilized as a basis for the designing of other structures,
methods and systems for carrying out the several purposes
of the present invention. It is important, therefore, that the

50 claims be regarded as including such equivalent construc­
tions insofar as they do not depart from the spirit and scope
of the present invention.

of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management 45

method; maintain list of available module means for main­
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data
management method, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main­
taining said input, output, and process modules currently
being used for a current computer data management method
copy operation in a program object, and saving the currently
active modules in a process template file; and maintain
complete document information means for maintaining
information regarding a current file being copied, and saving
the information in a document template file.

Further, the purpose of the foregoing abstract is to enable
the U.S. Patent and Trademark Office and the public

55 generally, and especially the scientists, engineers and prac­
titioners in the art who are not familiar with patent or legal
terms or phraseology, to determine quickly from a cursory
inspection the nature and essence of the technical disclosure
of the application. The abstract is neither intended to define

60 the invention of the application, which is measured by the
claims, nor is it intended to be limiting as to the scope of the

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management method capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications 65

responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of

invention in any way.
These together with other objects of the invention, along

with the various features of novelty which characterize the
invention, are pointed out with particularity in the claims
annexed to and forming a part of this disclosure. For a better
understanding of the invention, its operating advantages and

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 67 of 90

US 6,771,381 B1
43

the specific objects attained by its uses, reference should be
made to the accompanying drawings and descriptive matter
in which there is illustrated preferred embodiments of the
invention.

These together with other objects and advantages which 5

will be subsequently apparent, reside in the details of
construction and operation as more fully herein described
and claimed, with reference being had to the accompanying
drawings forming a part hereof wherein like numerals refer

44
FIG. 20 is a detailed illustration of the distributed envi­

ronment or architecture for manually and/or automatically
generating and/or using reusable software components for
client server and/or intranet operating environments;

FIG. 21 is an illustration of a distributed environment or
architecture for manually and/or automatically generating
and/or using reusable software components for network
environments, such as the Internet;

FIG. 22 is a detailed illustration of the distributed envi-
to like elements throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

10 ronment or architecture for manually and/or automatically
generating and/or using reusable software components in the
Internet environment;

FIG. 1 is an illustration of the placement and/or use of the
computer architecture and/or method of the present inven­
tion;

FIGS. 23A-23C are illustrations of the image viewer user

15
interface and/or functionality associated therewith in accor­
dance with the present invention;

FIG. 2 is an illustration of the component factory migrat­
ing the original "C"-levelAPI from its original state into the
generic interface defined by the topmost layer;

FIG.3 is an overview of the computer architecture in the
20

present invention;
FIG. 4 is an illustration of the design of an Object in

accordance with the computer architecture of the present
invention;

FIG. 5 is an illustration of the architecture comprised of 25

two major parts;

FIG. 24 is an illustration of a stand-alone and/or distrib­
uted environment or architecture for image viewer in client
server and/or intranet operating environments;

FIG. 25 is a detailed illustration of a stand-alone and/or
distributed environment or architecture for image viewer in
client server and/or intranet operating environments;

FIG. 26 is an illustration of a stand-alone and/or distrib­
uted environment or architecture for image viewer in net­
work environments, such as the Internet;

FIG. 27 is a detailed illustration of a stand-alone and/or
distributed environment or architecture for image viewer in
the Internet environment;

FIG. 6 is an illustration of the architecture of an engine
component including, for example, three layers designed to
migrate the original API of the engine to a consistent COM
interface; 30

FIGS. 28 and 29 are illustrations of the interface of the
Virtual Copier (VC) embodiment of the present invention
with a Go button much like a physical copier; FIG. 7 is a table illustrating the engine management

specification with definitions;
FIG. 8 is an illustration of the engine management layer

being divided into three functions/specifications;
FIG. 9 is an illustration of exemplary tables used to drive

the three functions of the engine management layer illus­
trated in FIG. 8;

FIG. 30 is an illustration of the sequence used with Virtual
Copier with just the Power VC portion of the main Virtual

35 Copier window;

FIG. 10 is an exemplary table illustrating the engine
configuration specification with definitions;

FIG. 11 is another exemplary table illustrating the engine
configuration specification;

FIG. 12 is an exemplary table illustrating the engine
functionality specification with definitions;

40

FIG. 13 is another exemplary table illustrating the engine 45

functionality specification;
FIG. 14 is an illustration of a main central processing unit

for implementing the computer processing in accordance
with a computer implemented embodiment of the present
invention;

FIG. 15 illustrates a block diagram of the internal hard­
ware of the computer of FIG. 14;

50

FIG. 16 is a block diagram of the internal hardware of the
computer of FIG. 15 in accordance with a second embodi-

55
ment;

FIG. 17 is an illustration of an exemplary memory
medium which can be used with disk drives illustrated in
FIGS. 14--16;

FIG. 18 is an illustration of another embodiment of the 60
component factory migrating the original "C"-level API
from its original state into the generic interface defined by
the topmost layer;

FIG. 19 is an illustration of a distributed environment or
architecture for manually and/or automatically generating 65

and/or using reusable software components for client server
and/or intranet operating environments;

FIG. 31 is an illustration of the five core modules of VC;

FIG. 32 is an illustration of VC recognizing that the
third-party application is running, and intelligently copying
paper to and from that application;

FIG. 33 is an illustration of a button that can be placed on
a third-party application that launches VC in the back­
ground;

FIG. 34 is an illustration of the VC logic flow;

FIG. 35 is an illustration ofVC updating its Client Module
as well as the results of each Module acting on the docu­
ment;

FIG. 36 is an illustration of the structure of the Modules
Object;

FIG. 37 is an illustration of the structure of the Program
Object;

FIG. 38 is an illustration of the internal VDocument
mapping to physical files;

FIG. 39 is an illustration of the VDocument Object;
FIGS. 40 and 41 are illustrations of two events that the

Server Module supports: Error and Status, the Error event
being generated anytime any of the Modules produce an
error condition, and the Status event being generated when
information needs to be transferred between the lOP or
Server Modules and the Client Module;

FIG. 42 is an illustration of a general workflow of the
events that are generated that manage the flow of modules
and user interaction with the Server Module;

FIG. 43 is an illustration of the general logic flow of the
Client Module;

FIG. 44 is an illustration of the basic Client architecture;

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 68 of 90

US 6,771,381 B1
45

FIG. 45 is an illustration of the API for the Input, Process,
and Output Modules that are made simple so that third-party
vendors can create their own custom versions of these
modules with relative ease;

46
ments to yield a still further embodiment. Additionally,
certain features may be interchanged with similar devices or
features not mentioned yet which perform the same or
similar functions. It is therefore intended that such modifi-

FIGS. 46-47 are illustrations of the Feedback object used 5

to communicate between the lOP and the Server Module;
and

cations and variations are included within the totality of the
present invention.

The purpose of the Virtual Copier ("VC") aspect of the
present invention is to enable a typical PC user to add
electronic paper processing to their existing business pro-FIG. 48 is an illustration of the basic lOP architecture.

NOTATIONS AND NOMENCLATURE

The detailed descriptions which follow may be presented
in terms of program procedures executed on a computer or
network of computers. These procedural descriptions and
representations are the means used by those skilled in the art
to most effectively convey the substance of their work to
others skilled in the art.

10 cess. VC is an extension of the concept we understand as
copying. In its simplest form it extends the notion of copying
from a process that involves paper going through a conven­
tional copier device, to a process that involves paper being
scanned from a device at one location and copied to a device
at another location. In its more sophisticated form, VC can

15 copy paper from a device at one location directly into a
business application residing on a network or on the Internet,
or visa versa. The VC invention is software that manages
paper so that it can be electronically and seamlessly copied
in and out of devices and business applications (such as

A procedure is here, and generally, conceived to be a
self-consistent sequence of steps leading to a desired result.
These steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated. It proves convenient at times,
principally for reasons of common usage, to refer to these 25

signals as bits, values, elements, symbols, characters, terms,
numbers, or the like. It should be noted, however, that all of
these and similar terms are to be associated with the appro­
priate physical quantities and are merely convenient labels
applied to these quantities.

20 Microsoft Office, Microsoft Exchange, Lotus Notes) with an
optional single-step Go operation. The VC software can
reside on a PC, LAN/WAN server, digital device (such as a
digital copier), or on a web server to be accessed over the
Internet.

Virtual Copier is designed to solve the corporate paper
problem by enabling existing web-based and client-server
applications to manage paper as part of their solution.
Virtual Copier links the familiar and universal world of
paper and digital devices to web-based and client-server

30 applications. The result is that the automated business pro­
cesses become the primary storage of paper in electronic
form. Information that is typically managed and processed
in paper form is "copied" into the system and managed by
the business processes with which users are accustomed,

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human
operator. No such capability of a human operator is
necessary, or desirable in most cases, in any of the opera­
tions described herein which form part of the present inven­
tion; the operations are machine operations. Of course, one

35 which is made possible by using Virtual Copier. Simple
extensions of Virtual Copier support seamless electronic
outsourcing of paper processing and archival services over
the web.

or more of the above operations may alternatively be done
manually. Useful machines for performing the operation of
the present invention include general purpose digital com- 40

puters or similar devices.

The present invention also relates to apparatus for per­
forming these operations. This apparatus may be specially
constructed for the required purpose or it may comprise a

45
general purpose computer as selectively activated or recon­
figured by a computer program stored in the computer. The
procedures presented herein are not inherently related to a
particular computer or other apparatus. Various general
purpose machines may be used with programs written in

50
accordance with the teachings herein, or it may prove more
convenient to construct more specialized apparatus to per­
form the required method steps. The required structure for a
variety of these machines will appear from the description

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper processing to
existing Intranet and client-server business processes with­
out any fuss. Whether it is an office clerk that needs to easily
copy a report from a desktop scanner to the company's
Intranet-networked copier, or an accounting software inte­
grator that wants to embed paper processing, Virtual Copier
offers a simple solution. To the office clerk Virtual Copier is
a document imaging application packaged in the familiar
setting of an office copier. To the integrator, the underlying
open architecture of Virtual Copier offers a simple integra­
tion path for embedding paper processing into its client-
server or web-based software solution.

Although managing paper manually is one of the great
problems facing corporations, there has been little inn ova-

given.

BEST MODE FOR CARRYING OUT THE
INVENTION

Reference now will be made in detail to the presently
preferred embodiments of the invention. Such embodiments
are provided by way of explanation of the invention, which
is not intended to be limited thereto.

55 tion in enabling those workers to eliminate the need to
continuously work with paper manually. Much of the prob­
lem stems from the complexity of traditional document
management systems, which require days of training and
months to become familiar with the system in order to be

In fact, those of ordinary skill in the art may appreciate
upon reading the present specification and viewing the
present drawings that various modifications and variations
can be made. For example, features illustrated or described
as part of one embodiment can be used on other embodi-

60 proficient. Virtual Copier was designed to be as simple as a
copier to operate, and yet still provide the complete cap a­
bility of integrating paper with existing business applica­
tions. By simplifying the interface and underlying software
infrastructure, VC can manage paper in electronic form as

65 easily as is currently done in physical form.
VC extends the notion of a copier, which simply replicates

the image of an original document onto another piece of

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 69 of 90

US 6,771,381 B1
47

paper using a single GO or START button, to do a similar
operation in software so that the image gets seamlessly
replicated into other devices or applications or the Internet.

48
the invoice with the appropriate accounting record), and it is
simple (one Go button).

What is true with regard to the example above of an
accounting system is true of most other business applica-An example of this is the actual implementation of Virtual

Copier as a consumer product. The interface of the consumer
product called Virtual Copier has a Go button much like a
physical copier. This GO button can copy paper, whether
physical or electronic, from one device and or application to
another device and/or application.

5 tions. The power of Virtual Copier is that it can turn an
information system into a document management system by
adding support for electronic paper directly into the existing
business application, whether it is a client, server-based, or
web-based system.

Virtual Copier enables corporations to perform sophisti-
cated document imaging with their existing Web-based and
client-server applications through a user interface that is as
familiar as the office copier. Virtual Copier can be used
out-of-the-box as a standalone application to copy, scan, fax,

What makes Virtual Copier as simple as its physical 10

counterpart in at least one embodiment is the fact that it
replicates the identical motions that a user who is making a
copy using a physical photocopier goes through. When a
user photocopies a document, he/she selects where they
want to copy from (i.e. the sheet feeder), where the user
wants to copy to (i.e. 6 copies collated and stapled) and then
presses a GO button to actually carry out the photocopy
process. With Virtual Copier the process feels familiar
because the sequence is the same with just the Power VC
portion of the main Virtual Copier window.

15 or print images using existing digital devices within corpo­
rate environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into
Web-based and client server applications, such as ERP or
accounting systems, to eliminate paper from existing busi-

The power of Virtual Copier is the fact that the From can
be a physical device (e.g. digital copier, fax or scanner) or

20 ness processes and legacy applications. Virtual Copier can
also be used to support seamless access to document image
processing and archival over the web since, in at least one
embodiment, the VC interface is implemented as a software
application.

an application (e.g. Lotus Notes, Microsoft Exchange, the
Internet, or an electronic filing system). The To can also be

25
a physical device (e.g. a fax, digital copier, or printer) or an
application (e.g. Lotus Notes, Microsoft Exchange, the
Internet, or an electronic filing system). Even though paper
is being copied electronically from devices to applications,
from applications to devices, from devices to devices, or
from applications to applications, the user simply has one
sequence to execute: select From, select To, and then press
GO. Virtual Copier will accomplish all translations between
device and applications automatically and seamlessly.

VC is architected as an application that delivers end-user
functionality while remaining open to third-parties exten­
sions. For example, VC can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The
only difference is that VC does not distinguish between

30 electronic and physical paper.

Another reason that paper is still a major corporate issue

To accommodate third-party extensions, VC is divided
into five essential modules. Each module is a counterpart to
an aspect that is found on a conventional copier. Based on

35
the modular design of VC, each aspect of VC can be
independently extended, offering much greater flexibility
than conventional copiers.

is that traditional document management systems require
that a company invest in a whole new system just to store
electronic images. Although this is the only way that docu­
ment management systems have been designed and
delivered, it is in fact highly inefficient. Most companies 40
already manage information about physical documents in
some form of software applications.

For example, accounting systems have long been used to
maintain information about invoices and bills that arrive into
a company from outside sources as physical pieces of paper. 45

When an invoice arrives, its information is keyed into the
accounting software, where balances are maintained and
accounts payable information is coordinated. Yet the original
invoice is stored manually, and every time that a request is
made for a copy of the signed invoice, someone manually 50

retrieves the invoice from a physical filing cabinet. Account­
ing systems, like most business applications, typically have
no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an
accounting system is cumbersome, costly, and difficult to 55

maintain, and even more difficult to coordinate.
Virtual Copier solves this problem in at least one embodi­

ment by copying paper directly into the existing accounting
system. Simply adding a To item in the Virtual Copier
window enables a user to copy paper directly into the 60

appropriate accounting record of the existing accounting
system. This requires no retraining (users who are trained on
the accounting system will still use the accounting system in
the same way), requires no document management system
(the electronic copy of the document is actually being 65

maintained by the accounting system itself), there is no
coordination between two systems (Virtual Copier embeds

The five core modules of VC illustrated in are:
Input Module-The Input Module manages paper or

electronic paper entering VC. This module manages
imaging devices to input paper through scanners,
MFPs, or the new breed of digital copiers. The Input
Module also manages reading electronic paper from
third-party or proprietary applications. The counterpart
to VC's Input Module on a conventional copier is the
scanner subsystem.

Output Module-The Output Module manages paper or
electronic paper exiting VC. Like the Input Module,
this module manages imaging devices to output paper
to standard Windows printers, specialty image printers,
MFPs, or the new breed of digital copiers. The Output
Module also manages writing electronic paper to third­
party or proprietary applications. The counterpart to
VC's Output Module on a conventional copier is the
printer or fax subsystem.

Process Module-The Process Module applies processing
to the electronic paper as it is being copied. Examples
of a process are OCR and ICR. The Process Module can
also apply non-imaging functionality as well, such as
workflow or other relevant tie-ins to the electronic
paper as it is being copied. One of the advantages ofVC
over conventional copiers is that multiple processes can
be applied to a single virtual copy. The counterpart to
VC's Process Module on a conventional copier is the
controller.

Client Module-The Client Module presents the elec­
tronic paper as it is being copied, and any relevant

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 70 of 90

US 6,771,381 B1
49

information related to the input or output functions. For
example, if the Output Module is directed to a printer,
then the Client Module might present the finishing
capabilities; if the Output Module is directed to
Goldmine, then the Client Module might present the
target contact record to which the document is being
copied. The counterpart to VC's Client Module on a
conventional copier is the panel.

Server Module-Unlike conventional copiers, VC's
Server Module is a unique subsystem that can commu­
nicate with the other modules as well as third-party
applications. The Server Module is what makes VC a
far more powerful concept than simply an application
that can control a scanner and a printer to mimic a
copier. The Server Module can be used to combine
third-party applications with the new breed of digital
imaging devices to create unique and custom virtual
copier solutions. A virtual copier can be created with
VC by combining a scanner with a printer; or by
combining a scanner with an application; or by comb­
ing an application with an image printer. In each case
VC is dynamically creating a custom virtual copier,
with a complete understanding of how paper flows
from the source to its destination. There is no counter­
part to VC's Server Module on a conventional copier.

One of the primary design goals of VC is to make it
simple to integrate VC with third-party applications. There
are two options to integrating VC into a third-party appli­
cation: running VC as an external service, or embedding VC
as an underlying service.

VC is in one embodiment and optionally a standalone
application that enables a user to scan (copy) paper from a
device to a third-party application, and to print (copy) the
reference of an image document from a third-party applica­
tion to a printing device. VC does not require the third-party
application to be aware that VC is operating. Rather, VC
recognizes that the third-party application is running, and it
intelligently copies paper to and from that application.

In this scenario the user is interacting with VC's Client
Module in order to execute a copy operation to and from the
third-party application. There does not have to be any
changes made to the third-party application, not even to its
interface, in order for VC to operate. The user of VC only
knows that to copy to and from the third-party application,
a custom Input and Output Module must be selected, and the
Go button is pressed.

50
dently from any other module. As long as the Input and
Output Module conform to the API specified in this docu­
ment it will plug-and-play with VC. VC will be able to mix
and match the custom Input and Output Module with its

5 standard and other custom Input and Output Modules.
A third-party application can also use the services of VC

without its user interface. That is, a third-party application
can embed VC's functionality and provide its own interface
to its functionality. For example, rather than have VC as a

10
separate application, a special button can be placed on a
third-party application that launches VC in the background.

VC is designed so that the Server Module can run
independently from the Client Module. All the core
functionality, including communicating with the Input,
Output, and Process Modules, are performed directly by the

15 Server Module. The Client Module is generally simply an
interface to the Server Module. Therefore, all the services of
the Server Module can be made available in the background
to a third-party application without the need for an interface.
The third-party application can in fact become the user's

20 interface to VC.
In order to support VC operating in the background a

third-party application merely has to communicate with the
Server Module directly, as described later in this document.
The Server Module, as all modules in VC, support COM-

25 based interfaces for simple and direct support from all major
Windows development environments.

The purpose of the computer architecture and process
described herein is to create a component factory that can
automatically generate reusable software components from

30 sophisticated core software technologies. Many, if not most,
core software technologies, such as OCR (Optical Character
Recognition) or barcode recognition, are designed and
implemented using a "C" -language API (Application Pro­
gram Interface). The technology is often complex, requiring

35 months of trial-and-error to correctly develop application
systems using the technology. While there are millions of
Intranet developers and power-PC users who are capable of
assembling component-based systems, I have determined
that there are relatively few "C" programmers (estimated at

40 less than 100,000) who can learn and implement application
software with these complex _C'-levelAPI's. It is therefore
desirable to develop software tools for automatically gen­
erating reusable software components from core software
technologies thus making these software technologies avail-

45 able to a much larger user base.
In order to support copying to and from a third-party

application, VC must be able to support extensions that
understand each third-party application. This is accom­
plished through the Input and Output Modules. The Client,
Server, and even Process Modules remain independent 50

across third-party applications. However, in order to support
outputting to a third-party application, an Output Module is
developed that is unique to that third-party application.
Likewise, an Input Module is developed that is unique to a
third-party application in order to support reading images 55

from that application.

Since I have determined that there is no structure or
format for implementing "C" -level API's, the ability to
automatically transform a unique API into a standard com­
ponent would seem impossible since that would take a
nearly-human level of intelligence. To date, the only way, I
am aware, to create a component out of an existing API is
to have an existing programmer in the field do the work for
each API. Humans can intelligently analyze an API and
create a component based on intelligent decisions tempered
by experience. The challenge of creating a component
factory is the challenge of partially or substantially recreat-
ing the component design and formulating effective imple­
mentation decisions.

One would expect the translating a "C" -level API from its
native state into a component would require human-level
intelligence. This is mainly because "C" -level APis have
virtually no constraints as to how they can be implemented.
This means that there are an infinity variations of APIS,
which can only be managed by human-level intelligence.

It is the optional Input and Output Modules that render
VC extendable. For each third-party application there is a
unique pair of Input and Output Modules that understand the
third-party application, and how to copy images to and from 60

that application. Each Input and Output Module registers
itself to the Windows registry so that the Server Module
knows how to find them. In this way Virtual Copier can grow
indefinitely, to support any number of third-party applica­
tions. 65 While this point is true, I have determined that the appro­

priate solution starts at the other side of the equation, which
is the component itself.

The significant point is that the Input and Output Modules
have their own interface, and can be developed indepen-

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 71 of 90

US 6,771,381 B1
51 52

high-level developers can easily learn and implement the
core technology. The computer architecture is therefore a
middleware or enabling technology, as illustrated in FIG. 1.

As illustrated in FIG. 1, computer architecture 2,

My solution starts out with a definition of a component
that can sustain the feature/function requirements of any
API. In other words, the interface of a generic component
can be defined such that the features and functions of
virtually any API can be re-implemented within its bounds.
The two known end-points are the "C" -level API that started
with, and the component interface that represents any set of
features/functions on the other side.

5 described below in detail, is a middle layer between high
level developer programs 4 (such as C-level APis, or other
programs having similar characteristics) and are technology/
component engines 6 (such as OCR, bar code recognition,

I have also determined that one solution for creating a
computer architecture and process for implementing a com-

10
ponent factory is to create a well-defined multi-tiered sys­
tems architecture for a component and to automate, substan­
tially automate, or manually expedite from its native state
through the various tiers of the systems architecture result­
ing in a standardized or substantially standardized compo­
nent. Advantageously, this solution is not based on making
human-level intelligent decisions on how to translate a
_C'-level API into a component. Rather, by starting with a
well-defined systems architecture that is multi -tiered, a
series of incremental steps that migrates a C-level API from
one tier within the systems architecture to the next may be 20

performed, and which are facilitated using the architecture
and/or process described herein.

and other components having similar characteristics).
Another benefit of the architecture is that it provides a

high-level specification for a consistent interface to any core
technology. Once a high-level developer learns the interface
described herein for one engine, that knowledge is easily
transferable to other engines that are implemented using the

15 architecture. For example, once a high-level developer
learns to use the computer architecture for OCR (Optical
Character Recognition), using the computer architecture for
other engines, such as barcode recognition or forms
processing, is trivial.

In summary, the architecture and process described herein
is at once a framework for rapidly wrapping sophisticated
technologies into high-level components, as well as a frame­
work for high-level developers to communicate with a
diverse set of engines. The creating of a component factory

Advantageously, each incremental step is not a major one,
but in sequence the entire series of steps will result in a
usable component. Since each step of migration is not a
major one, the chances of automating these steps is signifi­
cantly higher and the likelihood of being able to create the
component factory becomes more feasible.

The fundamental building blocks of the computer archi­
tecture and process are twofold:

25 is based on the fact that the architecture defines a clear path
for "wrapping" any C-level API into a component using
simple structures and many rote steps. This process is
currently being done in an inefficient manner by a program­
mer in the field.

1) To define a systems architecture that describes in detail
how to implement a component from a C-level API

2) To create a component factory by automating, substan­
tially automating, or manually expediting the migration

30

of a C-level API from one tier within the architecture to 35

the next.
The building blocks are the keys or important to actually
making the component factory feasible.

The method described herein for creating a component
factory creates a well-defined multi-tiered architecture for a
component and automates, substantially automates, or
manually expedites (hereinafter "automates") the process of
migrating a "C" -API from its native state through the
various tiers of the architecture resulting in a standardized
component.

Advantageously, the method described herein does not
base the component factory on making human-level intelli­
gent decisions on how to translate a "C" -level API into a

40 component. Rather, by creating a well-defined architecture
described below that is multi-tiered, the method is a series
of incremental steps that need to be taken to migrate the
"C"-level API from one tier within the architecture to the

Significantly, the computer architecture and processes
described herein have application to the Intranet and docu­
ment market marketplace. Corporations are embracing inter­
net computing technologies to create enterprise-level Intra­
nets and Extranets. Using standard browser technologies,
corporations and government entities are rapidly adopting
the internet computing model and are developing enterprise 45

applications by assembling standard Microsoft specified
Active X components. These are not "C" programmers;
rather they are typical power PC users. Further availability
of reusable components would only fuel this development.

next. In this way each incremental step is not a major one,
but in sequence the entire series of steps will result in a
component.

Since each step of migration is not a major one, the
chances for automating these steps is significantly higher
and the likelihood of being able to create the component
factory becomes feasible. This approach is in fact what
makes the method cost-effective, since the alternative
approach, i.e., computer-generated human-level decision
making, is currently unavailable and would require much
effort, if at all possible, to replace humans in any realistic
decision-making process.

With a fixed architecture that can be used to implement a
"C"-level API as a component (using a programmer), that
same architecture can be used as the basis for the component
factory model. In order to make the component factory, each
step of the architecture needs to be designed to facilitate
automation or manually expedited. In other words, I have
determined that automating/expediting the process of taking
the original "IC"-level API and migrating it to a Level 1
layer, and then a Levell to a Level 2, and then a Level 2 to

The general outline for creating a component factory is 50

described below in detail. It is important to note that
automatically, substantially automatically, or manually
building a component is neither obvious nor guaranteed. As
will be described below in detail, automating or substan­
tially automating the building of a component consists of 55

automating individual steps that comprise the component
architecture. However, in today's application environment,
any amount of automation will dramatically increase the
efficiencies of building a component The computer archi­
tecture is designed for managing a diverse set of indepen- 60

dent core technologies ("engines") using a single consistent
framework. The architecture balances two seemingly oppos­
ing requirements: the need to provide a single consistent
interface to many different engines with the ability to access
the unique features of each engine. 65 a Level 3 layer, and so on, the component has been imple­

mented automatically, or more efficiently manually. The
component factory is therefore a sum of the ability to

The benefit of the architecture is that it enables a company
to rapidly "wrap" a sophisticated technology so that other

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 72 of 90

US 6,771,381 B1
53

automate migrating the "C"-level API from one layer to the
next within a well-defined architecture for implementing
components.

54
simply defining the framework for wrapping engines, it also
defines the specific steps for wrapping these engines.

The architecture consists of a hierarchical series of layers
that take any "C" -level API from its unique state to one that As illustrated in FIG. 2, the component factory 10

migrates the original "C"-levelAPI 12 from its original state
into the generic interface 8 defined by the topmost layer. The
first feature that can be demonstrated is that there is a
topmost layer 8 that can define a component interface that
can represent the features/functions of most core technolo­
gies. The component factory 10 migrates the "C"-level API
12 to the topmost level 8. Doing this in one large step would
be impossible since the "C"-level API has a near-infinite
variety of styles. However, the architecture advantageously
has enough well-defined and well-structured layers for
implementing the topmost component interface, for creating
the component factory.

5 is standard and consistent. The result is a single, highly­
integrated object component that contains and manages any
type of engine that can be programmed regardless of the
nature and subject of the core technology. The architecture
therefore not only defines the goal (e.g., the object compo-

10 nent interface) but also the means of implementing that goal
for any type of engine.

The architecture is comprised of two major parts as
illustrated in FIG. 5: the Object Manager 14, and the
individual object components 16, 18, 20. The Object Man-

A simplified overview of the architecture is illustrated in
FIG. 3. In FIG. 3, the component interface 8 sits on top of

15 ager 14 in FIG. 5 manages individual object components 16,
18, 20 illustrated as Object 1, Object 2, etc. The Object
Manager 14 communicates with the individual object com­
ponents 16, 18, 20 using a consistent COM interface.

Each object component implements the feature set of an an Object Manager 14 that communicates with individual
objects e.g., 16, 18, 20. These objects 16, 18, 20 represent
specific core technologies that are represented as "C"-level
APis. The design of Object1, Object2, . . . ObjectN is
illustrated in FIG. 4.

A component factory can be created by automating the
process of migrating the original "C" -level API 12 from its
original state to the Layer 1-Engine Management tier 26,
and then from the state to Layer 2 Engine configuration tier
24, and so on up the Engine Functions layer 22. These layers
will be further described below.

20 individual engine by mapping a consistent COM interface to
the "C"-Level API interface of the individual engine that it
supports. In this way the Object Manager can consistently
communicate with each engine, using the engine's object
component. Because the COM interface of each object

25 component is consistent, the Object Manager can interface
with every underlying engine the same way.

The features of the architecture include:

1) definition of consistent COM interfaces for individual
object components that represent diverse technologies;

2) a prescribed process for migrating any engine to the
defined consistent COM interface; and/or

3) a predefined Object Manager that automatically man­
ages the individual object components.

When implemented, for example, as an ActiveX control,
the architecture also yields an umbrella control that can be
used by a high-level programmer to program and manage
numerous sophisticated technologies in a plug-and-play
environment. In order to facilitate the discussion of the

The computer architecture is implemented, for example, 30

as a standard COM component, as an ActiveX control; the
specifications designed by Microsoft, published in the tech­
nical literature, and incorporated herein by reference.
Active X control (COM) support is currently available within
any Microsoft 32-bit Windows operating environment. 35

ActiveX controls are supported by all OLE-based
applications, including all of Microsoft's end-user products
(e.g., Microsoft Office, Word, Access, Powerpoint, Access),
the main Internet Browsers (Microsoft's Internet Explorer
and Netscape's Navigator-the latter with an add-in product
and by 4Q97 directly), most other name-brand end-user
Windows products (e.g., Lotus Notes), and all major devel­
opment environments (e.g., Microsoft Visual Basic and
Visual C++, Delphi, Borland C++, Power Builder). By
implementing the architecture as, for example, an ActiveX 45

control, complex technologies can be programmed by vir­
tually any Windows or Intranet user or developer. Of course,
other component specifications may also be used.

40
architecture itself it is best to start with the architecture of
the engine object component and then describe the Object
Manager. Since the Object Manager is directly dependent on
the engine object components, an understanding of the latter
will assist in the description of the former.

Although the architecture has been implemented as a
COM-based technology with C++ as the language of choice, 50

the architecture can be implemented in many other lan­
guages (e.g. Java) and distributed architectures (e.g.
COREA).

Every engine, such as a text retrieval or an OCR (Optical
Character Recognition) engine, has a unique interface. This 55

interface is generally a "C"-levelAPI (Application Program
Interface). In most cases, the learning curve for understand­
ing and integrating a new engine can be a one man-month to
several man-years and generally requires highly experienced
"C" programmers. The purpose of the architecture is to 60

define a clear infrastructure within which any core can be
rapidly "wrapped" so that users and developers can have
easy access to these core technologies.

In addition to defining the infrastructure for engines to be
accessible to typical users, the architecture also defines how 65

to migrate an engine from its native state to the prescribed
interface. In other words, the architecture goes beyond

Engine Object Component-16, 18, 20

The purpose of the engine object is to wrap a specific
engine using a series of layers that convert the engine's
unique interface into a COM interface that is, for example,
specified by the architecture. The architecture not only
defines the consistent COM interface for implementing an
engine, it also describes how to implement the interface
from the original "C"-Level API. Once the COM interface
of the engine object component is implemented, the Object
Manager understands and can therefore communicate with
it.

Each engine component consists of, for example, three
layers that are designed to migrate the original API of the
engine to a consistent COM interface. As illustrated in FIG.
6, the Object Manager 14 communicates with the topmost
layer 22 of the object component 16, 18, 20 which is the
defined interface of object component.

Each layer is described below in two parts. The first part
is the prescribed COM interface for communicating with the
engine object component. The second part describes a
specific path for automating building the layer. By providing
an outline for automating building each layer, the overall

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 73 of 90

US 6,771,381 B1
55

engine object component can be automatically, substantially
automatically or manually expedited and generated.

Layer 1-Engine Management 26
5

56

-continued

public:

};

BOOL ActivateEngine (BOOL Activate);
BOOL IsEngineActivatedO;

The IEngineManagement interface is implemented in the
C++ class as the public methods: ActivateEngineo and
IsEngineActivatedo.

The first step of implementing the Engine Management
layer 20 is to wrap each original engine function within a
class-defined function that represents the original. For
example, if there is an original function called
SomeFunctiono, then the engine object should have a cor-
responding SomeFunctiono method. The engine object ver­
sion can then add standard engine and error management
code so that any layers above have automatic error detection,

The first layer in the object component architecture is
designed to deal with the fundamental features of an engine.
This includes the ability to load and unload the standard or
commercially available via, for example, MicroSoft
Corporation, engine Dynamic Link Libraries (DLLs) into 10
memory, as well as the ability to consistently deal with
errors. This is the most fundamental layer because it is the
essential "wrapper" layer of an engine. Once this layer is
complete all interaction with the underlying engine is fil­
tered through this layer. Additional important engine man- 15
agement functions include dynamically accessing a function
call of an engine, and initializing engine settings. All of these
engine management functions are optionally and benefi­
cially table driven to promote or facilitate access to, and
implementation of, engine management functions. 20 correction, and reporting.

The Layer 1 specification is summarized in FIG. 7 that
describes the IEngineManagement COM interface. The pur­
pose of the IEngineManagement interface is to transparently
load and unload an engine to and from memory. I have
determined that this is often the core feature that is incor- 25

rectly implemented and a cause for hard-to-find bugs. This
layer may be generated manually by a developer who is
familiar with the architecture as outlined herein in an
expedited manner or automatically as described below in
detail. 30

Layer 1 can be precisely defined in generic terms, and is
therefore the simplest layer to likely be automatically, sub­
stantially automatically, or easily manually generated. A
sample or example of actual code that can be used to

35
implement this layer is described below. As long the process
and/or code for implementing Layer 1 can be generically
defined, that is engine and technology independent, then the
process of generating the generic code for each new engine

An example of generic code that maps an original func­
tion call to the original function is as follows:

BOOL GetProcAddress (HINSTANCE hLib, FARPROC&Proc,
LPCTSTR ProcName)
{

Proc~ :: GetProcAddress (hLib, ProcName)
if (!Proc)
{

Set!MAGmEError (LOADENGINEFUNCTIONSERROR,
ProcName);

return FALSE;

return TRUE;

Given the original function name, the GetProcAddress
can map the original function to one that is defined by the
engine object. Using the engine object C++ header file
described above, the SomeFunctionO method is mapped to is expedited either manually or automatically.

The premise for automating any level is to start with as
few pieces of information as possible. For the Engine
Management layer I have assumed that nothing more than
the set of DLLs that implement the engine functionality are
known. Given this information, I have determined that I will
need to implement:

40 the original engine function using the following line of code:
(GetProcAddress (hLib, SomeFunction,

"SomeFunction");
To map all the function calls within the original engine

Loading and unloading the engine from memory

45
DLLs just requires cycling through each function call and
mapping it to the engine object counterpart. Since Windows
contains facilities that enables access to all the functions
within a DLL, a simple loop may be used. The hLib module
is derived from the DLL name, which, as mentioned at the Adding error management We can start, in this example,

with a model C++ header file that defines the Engine
Management layer and investigate how this code can be 50

implemented generically.

start, is the one piece of information we are given.
What is more complex is to define a generic implemen­

tation of the engine object version of the original function.
This may be described in code as follows: As mentioned earlier, if the code to implement this layer

can be defined generically then it can be easily generated, for
example, manually, and/or automatically for any engine.

class SomeEngineObject
{

//Wrapper Functions
private:

FARPROC_SomeFunction;
BOOL SomeFunctionO;
//EngineManagement

protected:
BOOL GetProcAddress (HINSTANCE, FARPROC&, LPCTSTR);
BOOL GetProcAddressesO;
BOOL ProcessErrorO;

55

60

BOOL SomeFunction (arguments)
ASSERT (arguments)
Error Variable~ _Some Function (arguments);
returnProcessErrorO;

The engine object version of the original function passes
the function call to the original one after completing a series
of assertion tests, and is followed by a series of error

65 detection tests. In this way the original engine function is
"wrapped" by the engine object to manage error detection
and correction.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 74 of 90

US 6,771,381 B1
57

The process of loading an engine can likewise be imple­
mented generically.

58
automatically loaded and unloaded, initialized, and/or
dynamically hooked into the necessary functions.
Accordingly, the process of generating level 1 for engine
management may advantageously be automated. The spe-

BOOLLoadDLLsO
{

s cific algorithms used for the engine management layer are
described in the Appendix.

In summary, for the Engine Management layer the fol­
lowing pieces may be automated, substantially automated,
and/or manually expedited.

BOOLbReturn~TRUE;

HINSTANCEt_hLib;
CStringt_ModuleName;
POSITIONpos;
pos~m_Modules.GetStartPosition 0;
if (pos~NULL)

10 Loading and unloading the engine DLLs (provided into

{
Set!MAGinEError (NOMODULESDEFINED);
return FALSE;

while (pos&&bReturn)
{

m_Modules.GetNextAssoc (pos, t ModuleName, t hLib);
if (t_hLib!~NULL)

continue;
t_hLib~: :LoadLibrary(t_ModuleName);
if (t_hLib~NULL)
{

Set!MGAinEError (CANTLOADMODULE,
t_ModuleName);
FreeDLLsO;
bReturn~FALSE;

break;

m_Modules.SetAt (t_ModuleName, t_hLib);

returnbReturn;

15

20

25

and out of memory

Mapping original functions to engine object counterparts

Adding general error detection and correction

Determining and matching arguments and return values
for mapping the original functions to their engine
object counterparts. In order to add assertion and error
detection and correction, the original function must be
wrapped and called from within the engine object
version of the original function.

Managing error feedback. All APis have their own way of
providing error feedback. Since one of the goals of the
Engine Management layer is to generically manage
error detection, correction, and feedback, it must
handle all errors identically. However, APis have
numerous and incompatible methods in this case. I
have determined that most APis follow one of several
distinct mechanisms for providing error feedback.

} By creating specific classes of APis, the process of
30 generating Layer 1 engine management may be expedited,

manually and/or automatically. The LoadDLLs function is a generic implementation of a
function that loops through the names of DLLs that are
provided (in the form of the mModules variable), and cycles
through each one loading it into memory using the Windows
LoadLibraryo function. A similar engine object function can 35

be implemented to remove these DLLs from memory.
The present invention further divides the engine manage­

ment layer into three functions, as illustrated in FIG. 8. The
first function is loading and unloading 124 of the core or
engine technology. The second function for the engine 40

management layer 26 is dynamically linking procedures or
function calls, or hooking the desired engine functionality
into the procedures of the core technology 126, including,
for example, initializing and setting up engine settings. The
third function is initializing the engine itself 128, which is 45

essentially engine management. Once these three functions
are performed in level1, anything in the core technology is
accessible.

Advantageously, the present invention utilizes tables to
drive each of these three functions described above, and as so
illustrated in FIG. 9. Each of the tables of files, for example
tables 130, 136, 140, are filled in with the appropriate data

Layer 2-Engine Configuration 24

The second layer 24 in the object component architecture
is designed to deal with configuring an engine. This includes
the ability to set any variety of features that are generally
associated with the functioning of an engine. The architec­
ture is designed to meet the challenge of providing a uniform
interface for dealing with generally any or most engine
settings.

The engine configuration layer 24 includes a series of
prefabricated functions that map out the settings stored in
the table to the appropriate engine configuration parameters.
Accordingly, all that is needed is to fill in the values for the
table associated with engine configuration. Thus, the engine
object may advantageously come pre-packaged with prede­
termined tables populated with predetermined values.

The Layer 2 specification can be summarized in FIG. 10
that describes an exemplary IEngineConfiguration COM
interface. The purpose of the IEngineConfiguration interface
is to provide the ability to set and get the settings of any
engine uniformly. While the Engine Management layer can
load and unload engines transparently, this layer configures

or information. I have discovered that if the above three
functions are set up or implemented using tables, that the
core technology may be effectively and efficiently described.
That is, the use of tables is a very effective and simple
method of describing an engine for use in engine
management, engine loading/unloading and engine proce­
dure linking. For example, it is similar to indicating or
providing the raw data of that engine, the list of the engine
functions, and the list of the engine dynamic link libraries
(DLLs) for engine management.

55 engines to operate as required by the user or developer.

The files or tables contain the logic or executable of the
engine. Accordingly, all that is needed is a list of the engine
functions 132, a list of the file of the engine executable code
or DLLs 138, and a list of the engine settings 142. Using the
tables with the above information, the engine may be

FIG. 11 is another exemplary table illustrating the engine
configuration specification. Examples include a set setting
function 144, a get setting function 146, a load setting 148,
a save setting 150, an is setting valid function 152, a default

60 setting 154, and a prompt setting 156.
The get setting 146 and set setting 144 functions retrieve

the value of a particular engine setting, or assign a value to
a particular engine setting, respectively. Each one of the get
setting and set setting functions includes or comprises a

65 table of the settings. The load setting 148 and save setting
150 functions do the similar function as the get setting and
set setting functions, but in persistence. Persistence is

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 75 of 90

US 6,771,381 B1
59

defined as writing values to the disk, for example hard disk,
compact disk, and the like, and retrieves the values from the
disk. So as where the get setting and set setting functions
assign a value and/or retrieves the value from local memory,
the load and set setting functions assign the value and 5

retrieve the value of the setting from disk.

60
Alternatively, for scanning, the present invention includes a
separate set of predefined functions.

Accordingly, there are a series of actions that are per­
formed by the engine function layer on a given engine, such
as an OCR engine, a scanning engine, a printing engine and
the like. The engine function layer is designed not to
generally go directly to a specific engine. Rather, the engine
function layer 22 will generally interface with the engine
management layer 26 and/or the engine configuration layer

The load and set setting functions provide persistence
when the computer system is close down, such that when the
computer system will return to the last setting when it is
subsequently reopened. 10 24 as needed.

The default setting function 154 provides the most favor­
able value for a given setting. Thus, if no setting is selected,
the system will automatically select default settings. The
prompt setting function 156 is what displays to the user all
the various settings. 15

Advantageously, the present invention generates the skel­
etal structure of each table automatically. In addition, since
there is a table of settings, the skeletal structure not only
generates these functions, but also fills in the settings that

20
need to be assigned. Thus, the engine configuration function
provides the feature of having a pre-populated set of options
which require particular values to be assigned to table
entries.

For example, in the course of performing an action and/or
function, the engine function layer interfaces with the engine
configuration layer to possibly modify settings. For an OCR
engine, the engine function layer fills out a table of OCR
documents as one action that could take place. OCR image
is another action.

The get function results 160 gets the results of the
function stored in a register. The clear function 162 clears all
the registers that contain all the results, in this case its
memory. The feedback event or function 164 provides
continuous feedback, depending on what action takes place.
For example, if an OCR action is being performed, the
feedback function provides the percentage of completion of

Although this architecture advantageously makes it
simple for a human to migrate the configuration of an engine
appear into two simple and universally applicable interface
points, doing so automatically requires additional steps. The
two steps to automating this approach are, for example, as
follows:

25
the OCR process.

Determine the configuration methods used by various
APis for configuring the core technology;

Detect the variations for configuring an engine and auto­
mating each one separately.

As with Layer 1-Engine Management, there exists a
finite set of general variations used by developers of core
technologies to configure an engine. Although Layer 1 is
clearly more generic in nature, advantageously, Layer 2 also
has considerable consistency.

Layer 3-Engine Functionality 22

The third layer 22 in the object component architecture is
designed to deal with accessing the actual functionality of
the core engine. For example, for an OCR engine this would
be to OCR an image or a document. For a text retrieval
engine this would be to initiate and retrieve results of a text
search.

30

The automation of this layer is accomplished by the
following functions:

Determine the execution of methods used by various APis
for executing a given function;

Divide this layer into a multi-tiered layer that further
facilitates automation;

Detect the variations of the sub-layers and automate each
one separately.

Although this layer has many more variations than Layer
35 2, I have determined that there is a general set of variations

used by developers of APis to implement core functionality.
Thus, the benefit of the component factory is that it can

transform core software technologies that are currently
available in "C" -level APis to a limited audience into

40 components that have a much greater audience.
There are a variety of "C"-level APis that cover the

following categories of functionality that can be better
served in the market asActiveX controls or other component
and used in conjunction with the architecture and methods

45 described herein.

An exemplary Layer 3 specification can be summarized in
FIG. 12 that describes the IEngineFunction COM interface. 50
The purpose of the IEngineFunction interface is to provide
the ability to initiate any function supported by an engine.
The simple IEngineFunction interface is capable of manag­
ing an infinite variation of functions.

Text Retrieval
Data Extraction
Workflow
Storage Management
Each of these categories has several vendors with prod­

ucts that currently service the market in a limited way
because the technologies are only available as "C" -level
APis. Without the core competency of creating components
out of these core technologies they are limiting their mar­
ketability and opportunity for international distribution.

The third layer may advantageously be further divided 55

into many sub-layers that more discretely define the steps
necessary to execute a function within an API. Since the
designer of an API has infinite variety of possible ways of
implementing a function, creating a tiered architecture to
manage this layer is useful.

With the proposed component factory users and vendors
can rapidly create components from their original core
technology and increase their marketability,

60 competitiveness, and ultimately their sales.
An exemplary tiered architecture for the engine function

is illustrated in FIG. 13. As illustrated in FIG. 13, the engine
function or engine processing layer includes four elements.
The engine function layer 22 includes a series of predefined
functions to perform in the perform element 158. For
example, for optical character recognition (OCR), the
present invention uses a set of predefined functions.

Further, there are numerous core technologies, such as
text-retrieval and ICR (Intelligent Character Recognition),
that have already been implemented, and are only available
as "C" -level APis. Many, if not most, core technologies are

65 first released exclusively as "C" -level APis. While there are
integrators and corporations who have the team of technolo­
gists who can integrate these "C" -level APis in-house, most

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 76 of 90

US 6,771,381 B1
61

companies are looking for component versions that can be
implemented at a much higher level. Therefore, many of the
core technologies that are only available in a "C"-level API

62
A display interface 72 interfaces display 48 and permits

information from the bus 56 to be displayed on the display
48. Again as indicated, display 48 is also an optional
accessory. For example, display 48 could be substituted or are not being used due to their inaccessible interface. The

benefit of the component factory is that it can rapidly make
available core technologies implemented as "IC" APis that
would otherwise be underutilized or dormant in research
labs by converting them to high-level components that can
be used by millions of power-PC users.

5 omitted. Communication with external devices, for example,
the components of the apparatus described herein, occurs
utilizing communication port 74. For example, optical fibers
and/or electrical cables and/or conductors and/or optical
communication (e.g., infrared, and the like) and/or wireless

With the advent of the World Wide Web (WEB) this
opportunity has increased exponentially. The WEB is now
home to a vast number of WEB authors with minimal formal
training who can implement HTML pages and build web
sites. One of the fundamental technologies for extending the
capability of the WEB from simple page viewing to inter­
active and sophisticated applications is components. A com­
ponent extends the capability of HTML by enabling a WEB
author to add core technology as a pre-packaged technology.
Since components are fundamental to the growth and usabil-

10 communication (e.g., radio frequency (RF), and the like) can
be used as the transport medium between the external
devices and communication port 74.

In addition to the standard components of the computer,
the computer also optionally includes at least one of infrared

15 transmitter 76 or infrared receiver 78. Infrared transmitter 76

ity of the WEB, having a component factor that can translate 20

"C"-level toolkits into components that are then usable
within WEB sites opens a vast and new worldwide market
to these technologies.

FIG. 14 is an illustration of a main central processing unit
for implementing the computer processing in accordance 25

with a computer implemented embodiment of the present
invention. The procedures described above may be pre­
sented in terms of program procedures executed on, for
example, a computer or network of computers.

Viewed externally in FIG. 14, a computer system desig- 30

nated by reference numeral 40 has a central processing unit
42 having disk drives 44 and 46. Disk drive indications 44
and 46 are merely symbolic of a number of disk drives
which might be accommodated by the computer system.
Typically these would include a floppy disk drive such as 44, 35

a hard disk drive (not shown externally) and a CD ROM
indicated by slot 46. The number and type of drives varies,
typically with different computer configurations. Disk drives
44 and 46 are in fact optional, and for space considerations,
may easily be omitted from the computer system used in 40

conjunction with the production process/apparatus described
herein.

The computer also has an optional display 48 upon which
information is displayed. In some situations, a keyboard 50
and a mouse 52 may be provided as input devices to 45

interface with the central processing unit 42. Then again, for
enhanced portability, the keyboard 50 may be either a
limited function keyboard or omitted in its entirety. In
addition, mouse 52 may be a touch pad control device, or a
track ball device, or even omitted in its entirety as well. In 50

addition, the computer system also optionally includes at
least one infrared transmitter 76 and/or infrared receiver 78
for either transmitting and/or receiving infrared signals, as
described below.

is utilized when the computer system is used in conjunction
with one or more of the processing components/stations that
transmits/receives data via infrared signal transmission.

FIG. 16 is a block diagram of the internal hardware of the
computer of FIG. 14 in accordance with a second embodi­
ment. In FIG. 16, instead of utilizing an infrared transmitter
or infrared receiver, the computer system uses at least one of
a low power radio transmitter 80 and/or a low power radio
receiver 82. The low power radio transmitter 80 transmits
the signal for reception by components of the production
process, and receives signals from the components via the
low power radio receiver 82. The low power radio trans­
mitter and/or receiver 80, 82 are standard devices in indus­
try.

FIG. 17 is an illustration of an exemplary memory
medium which can be used with disk drives illustrated in
FIGS. 14--16. Typically, memory media such as floppy disks,
or a CD ROM, or a digital video disk will contain, for
example, a multi-byte locale for a single byte language and
the program information for controlling the computer to
enable the computer to perform the functions described
herein. Alternatively, ROM 60 and/or RAM 62 illustrated in
FIGS. 15-16 can also be used to store the program infor­
mation that is used to instruct the central processing unit 58
to perform the operations associated with the production
process.

Although processing system 40 is illustrated having a
single processor, a single hard disk drive and a single local
memory, processing system 40 may suitably be equipped
with any multitude or combination of processors or storage
devices. Processing system 40 may, in point of fact, be
replaced by, or combined with, any suitable processing
system operative in accordance with the principles of the
present invention, including sophisticated calculators,and
hand-held, laptop/notebook, mini, mainframe and super
computers, as well as processing system network combina-
tions of the same.

Conventional processing system architecture is more fully
discussed in Computer Organization and Architecture, by

FIG. 15 illustrates a block diagram of the internal hard­
ware of the computer of FIG. 14. A bus 56 serves as the main
information highway interconnecting the other components
of the computer. CPU 58 is the central processing unit of the
system, performing calculations and logic operations
required to execute a program. Read only memory (ROM)
60 and random access memory (RAM) 62 constitute the
main memory of the computer. Disk controller 64 interfaces
one or more disk drives to the system bus 56. These disk
drives may be floppy disk drives such as 70, or CD ROM or
DVD (digital video disks) drive such as 66, or internal or
external hard drives 68. As indicated previously, these
various disk drives and disk controllers are optional devices.

55 William Stallings, MacMillam Publishing Co. (3rd ed.
1993); conventional processing system network design is
more fully discussed in Data Network Design, by Darren L.
Spohn, McGraw-Hill, Inc. (1993), and conventional data
communications is more fully discussed in Data Commu-

60 nications Principles, by R. D. Gitlin, J. F. Hayes and S. B.
Weinstain, Plenum Press (1992) and in The Irwin Handbook
of Telecommunications, by James Harry Green, Irwin Pro­
fessional Publishing (2nd ed. 1992). Each of the foregoing
publications is incorporated herein by reference.

65 Alternatively, the hardware configuration may be arranged
according to the multiple instruction multiple data (MIMD)
multiprocessor format for additional computing efficiency.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 77 of 90

US 6,771,381 B1
63

The details of this form of computer architecture are dis­
closed in greater detail in, for example, U.S. Pat. No.
5,163,131; Boxer, A., Where Buses Cannot Go, IEEE
Spectrum, February 1995, pp. 41-45; and Barroso, L. A et
al., RPM: A Rapid Prototyping Engine for Multiprocessor 5

Systems, IEEE Computer February 1995, pp. 26-34, all of
which are incorporated herein by reference.

In alternate preferred embodiments, the above-identified
processor, and in particular microprocessing circuit 58, may
be replaced by or combined with any other suitable process- 10

ing circuits, including programmable logic devices, such as
PALs (programmable array logic) and PLAs (programmable
logic arrays). DSPs (digital signal processors), FPGAs (field
programmable gate arrays),ASICs (application specific inte­
grated circuits), VLSis (very large scale integrated circuits) 15

or the like.

64
Level 2-120 serves two functions: It bridges level 1

dialogs with the actual Windows window that represents the
control. It also handles all Windows-related error message
presentation.

Level3-122 manages anything else from the underlying
engine (such as annotations) that needs to appear on the
window. The Visual Class includes engine-specific Windows
dialog boxes that let you customize which engine features
you want to use, as well as any other Windows representa­
tion necessary for a toolkit. (For example, a compression
engine has to display the image-the visual class, not the
engine, does the work.)

The Object Manager layer 106, the first horizontal
umbrella, orchestrates the underlying objects. It translates
service requests into a form that the engine objects can
understand.

FIG. 18 is an illustration of another embodiment of the
component factory migrating the original "C"-level API
from its original state into the generic interface defined by
the topmost layer. This powerful architecture goal is to
supply easy access to all imaging functions that can be
performed by any engine.

The Windows Manager 108 presents Windows messages
(move window, mouse/scrollbar/toolbox activity) to the
Object Manager. It is written using Microsoft's Foundation

20 Class (MFC), which makes it easy to support OCXs. (The
OCX is in fact an MFC class.)

At the top, a visual interface 110 presents to the user a set
of visual calls and translates those calls into Windows The architecture according to this second embodiment,

groups C-level toolkits 100 into logical categories, such as
scan, print, display, OCR, cleanup and so on. A single engine
can span multiple categories (e.g., Kofax engine does view/
print/scan). This enables the architecture to deal with the
multitude of engines available in a logical fashion.

messages. This layer comprises only 5% of the VEX code,
25 yet it permits the toolkit to appear as a VEX, OCX or other

standard visual interface.

On top of these, a three-level C++ class (or object) 102 is
built for each engine. This object gives uniform access to the 30

engine and to all its unique settings. The three levels do the
following:

Levell of the C++ classes 112 is a protective wrapper for
each function call in the underlying engine. It traps all errors
and provides error management and administration to pre- 35

vent accidental GPFs or engine crashes.
Think of it as the "condom layer." While providing the

most direct access feasible to the underlying engine and all
its capabilities, levell of the C++ class 112 also protects the
user from the engine. It manages all engine loading and 40

unloading, prevents multiple copies of an engine and calls
engines automatically as needed.

The architecture also provides three levels of access: 1.
Use the default engine settings. Benefit: No learning up
front. Program knowing nothing other than "OCR gets text 45

out of there."2. Prepackage customized engine settings. Set
it once for everyone who uses the program, every time they
use the program. 3. Modify engine settings at run-time. Let
the user choose the settings.

Level 2 of the C++ classes 114 bridges the low-level API 50

calls so they can be used by level3 116 in standardized calls
for each category. And it supplements the engine by pro­
viding additional functionality, such as safely loading and
unloading engines.

Level3 of the C++ class 116 consists of a standardized set 55

of calls for all engines in each category. Programmers can
access all the unique functions of each engine in a uniform
way.

Accordingly, the present invention provides two main
layers, the engine object component layer and the object
manager layer. By creating these two main layers, the
present invention allows third parties to create their own
engine object component layers so that the third party engine
can be readily compatible and useable by the present inven­
tion. In addition, the present invention is accessible via the
Internet. That is, the present invention is operable over the
Internet using, for example, standard Internet protocols,
such as component object module (COM) communication
protocol and distributed COM (DCOM) protocol.

In addition, the present invention optionally combines
three layers of functions including the visual interface, the
windows manager and the object manager into one layer
called the object manager. Of course, this combination of
layers is not meant to convey that only these specific layers
must be used, but rather, to be indicative of overall func­
tionality generally required to implement or execute com­
ponent engines. That is, one or more of the above functions
may be incorporated into the object manager layer. The
present invention also advantageously combines the visual
classes and C++ classes into the engine object component to
further standardize and/or provide access to the object
manager for engine object components.

The present invention optionally uses the standard
ActiveX component control supplied, for example, by
MicroSoft Corporation. Active X is a protocol for component
communication. The present invention also creates each of
the object manager and the engine component layer as a
separate ActiveX. That is, the object manager is its own
ActiveX control, and the engine object is its own ActiveX
control. Thus, the engine object can now run independently
from the object manager. Accordingly, the engine object can Another associated C++ class, called a Visual Class 104,

adds a visual interpretation of each engine. This class
manages all user interaction with each underlying engine.
Like their lower-level counterparts, the Visual Class consists
of three layers:

60 operate without relying necessarily on the concurrent opera­
tion of the object manager.

Levell-118 adds any dialogs or other pop-up window
capability that may be lacking in each engine. Examples:
Dialogs to customize the engine settings or, for a recognition
engine, the zone definition settings.

The independent relationship between the engine object
and the object manager means also that the engine object
represents a discrete means of technology. For example, an

65 engine object can be an OCR technology. This provides
several benefits. First, because the object manager layer is
open, the manufacturer of the OCR technology can wrap

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 78 of 90

US 6,771,381 B1
65 66

their own engine in the form of an engine object component,
and the engine will automatically "plug into" or work with,
the object manager. Thus, the engine object is provided high
level access, making it accessible to many more parties,
users, and the like. When the object manager interface is 5
designed to be open, any third party, such as an engine
manufacturer, can create their own engine object component
that is compatible with the object manager, the manufacturer
can do it.

Further, since the object manager is formatted or con­
structed of a client technology, the object manager can sit in
a standard browser. This means that anyone that has an
Internet browser, i.e., anyone that has access to the world
wide web (WEB) can actually access the core engine tech­
nology. Thus, by structuring the architecture of the present
invention as described herein, users automatically become
Internet, intranet and/or WEB enabled.

The present invention also transforms the core technology
from essentially client based technology into a client server
and/or a thin client technology. This makes the core tech­
nology high level accessible, thereby transforming any core
technology into client server, or hidden client technology.
The browser is located on the client, and the browser
leverages the object manager. Accordingly, the browser

FIG. 19 is an illustration of a distributed environment or
architecture for manually and/or automatically generating
and/or using reusable software components for client server
and/or intranet operating environments. A very significant
point that is relevant to why the object manager and the
engine object component are independent in the present
invention relates to providing a distributed environment for
using the present invention. Rather than communicate
within the same technology between the object manager and
the engine object, the object manager and the engine object
component communicate with each other in binary mode,
via, for example, standard distributed component object
module (DCOM) communication. As illustrated in FIG. 19,
object manager 14 communicates with engine object com­
ponent 16, 18, 20 via DCOM specification 166. Other types
of component communication may also be utilized that
provide the capability of a distributed component interac­
tion.

Thus, the engine object component and the object man­
ager can leverage current protocols to not only communicate
on the same machine, but also on different machines such as

10

15 optionally contains the object manager, and the object
manager makes requests over, for example, the Internet,
local network, and the like via a server, to the engine object.
The server would be either a web server or a LAN server.

The present invention also advantageously provides the
20 ability to have the client and the server, in a distributed

environment as discussed above, or on the same machine
locally. The present invention utilizes the DCOM commu­
nication protocol defining the communication protocol
between the object manager and the engine object compo-

25 nent. Accordingly, since DCOM can work on the same
machine as well as in a distributed environment, DCOM
does not necessitate that the engine object or the object
manager component be on two separate machines.

FIG. 21 is an illustration of a distributed environment or
architecture for manually and/or automatically generating
and/or using reusable software components for network
environments, such as the Internet. As illustrated in FIG. 21,
object manager 14 communicates with engine object com­
ponent 16, 18, 20 via DCOM specification and a networking

a client server and/or intranet and/or Internet environment. 30

The object manager can be placed on one machine, and the
engine object component on another machine and have
distributed processing, what is otherwise called thin client
processing, distributed processing, wide area intranet pro­
cessing. 35 environment, such as the Internet, intranet, and the like 168.

What this allows the present invention to do is to put the
object manager on the thin client, who would accept the
request from the user, for example, to OCR something or to
print something. The actual request is handled or processed

Other types of component communication may also be
utilized that provide the capability of a distributed compo­
nent interaction over a networking environment.

by the engine object component which generally resides on 40

the server. The engine object component contains the horse
power, or the processing power to process the request.

FIG. 22 is a detailed illustration of the distributed envi­
ronment or architecture for manually and/or automatically
generating and/or using reusable software components in the
Internet environment. In FIG. 22, client 170 includes object
manager layer 172. Browser/thin client 170aexecutes the
core technology 180, via accessing engine object layer 178

The engine object layer is generally located in the same or
substantially same location as where the core technology or
engine itself is being stored. Alternatively, the engine object 45

layer and the engine may be optionally located in a distrib­
uted environment on different machines, servers, and the
like.

managed/stored on web server 176a, and communicated via
the Internet 174a.

Browser/thin client 182a, located on the same web server
176aas core technology 180 and engine object layer 178,
may also be used to execute the core technology 180 via FIG. 20 is a detailed illustration of the distributed envi­

ronment or architecture for manually and/or automatically
generating and/or using reusable software components for
client server and/or intranet operating environments. In FIG.
20, client 170 includes object manager layer 172. Client 170
executes the core technology 180, via accessing engine
object layer 178 managed/stored on server 176, and com­
municated via server 174.

Client 182, located on the same server 176 as core
technology 180 and engine object layer 178, may also be
used to execute the core technology 180 via object manager
layer 184. In this instance, the client 182 with the object
manager layer 184 is located on the same server 176 as the
engine object layer 178. In addition, since the present
invention utilizes a communication protocol between
components, for example, DCOM, that allows a client to
also include both the engine object component layer and the
object manager layer on the same machine 186, as well as
the core technology.

50 object manager layer 184. In this instance, the browser/thin
client 182awith the object manager layer 184 is located on
the same web server 176aas the engine object layer 178. In
addition, since the present invention utilizes a communica­
tion protocol between components, for example, DCOM,

55 that allows a client to also include both the engine object
component layer and the object manager layer on the same
machine 186, as well as the core technology.

FIGS. 23A-23C are illustrations of the image viewer user
selectable or configurable or programmable interface and/or

60 functionality associated therewith in accordance with the
present invention. In FIG. 23A, user interface 200 for image
viewing includes viewing frame 202, with dual viewing
areas 204, 206. Viewing area 204 includes at the periphery,
previous page activator 208, at the top, document tools 210,

65 and at the bottom status indicator 214. Viewing area 206
includes at the periphery, next page activator 212, at the top,
document tools 214, and at the bottom status indicator 216.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 79 of 90

US 6,771,381 B1
67

Advantageously, this user interface is selectable and/or
customizable by the user, as illustrated below in connection
with this figure and FIGS. 23B-23C. Significantly, the
image viewer provides the ability to a user to retain or
develop a specific perspective on viewing a document. One
of the features of the viewer is therefore the ability to change
the user's perspective. For example, the user might be
looking at the same document, as a book, as a film, or as a
bounded or traditional book. This gives the user the ability

68
Thus, the engine object component and the object man­

ager can leverage current protocols to not only communicate
on the same machine, but also on different machines such as
a client server and/or intranet and/or Internet environment.

5 The object manager and/or viewer process can be placed on
one machine, and the engine object component on another
machine and have distributed processing, what is otherwise
called thin client processing, distributed processing, wide

to relate to the document in a fashion that they are comfort-
10

able with, depending on the content or depending on the
user. That is, the image viewer is like a usable selectable
perspective on viewing a document in a plurality of ways.

area intranet processing.
What this allows the present invention to do is to put the

object manager on the thin client, who would accept the
request from the user, for example, to perform the viewer
process. The actual request is handled or processed by the
engine object component which generally resides on the

FIG. 23B is an illustration of another user selectable
interface for image viewing. In FIG. 23B, user interface 200'
for image viewing includes viewing frame 202', with single
viewing area 204'. Viewing area 204' includes at the top left,
previous page activator 208' and at the top right next page
indicator 212'. Viewing area 204' also includes at the left
area document tools 210', and at the bottom status indicator
214'. Viewing area 204' also includes at the top, multiple
viewing page area 218, that appears and preferably moves
like a film, and provides viewing of multiple consecutive or
non-consecutive pages. Advantageously, this user interface

15 server. The engine object component contains the horse
power, or the processing power to process the request.

The engine object layer is generally located in the same or
substantially same location as where the core technology or
engine itself is being stored. Alternatively, the engine object

20 layer and the engine may be optionally located in a distrib­
uted environment on different machines, servers, and the
like.

is selectable and/or customizable by the user, as illustrated
below in connection with this figure and FIG. 23A and FIG. 25

23C.

FIG. 25 is a detailed illustration of a stand-alone and/or
distributed environment or architecture for image viewer in
client server and/or intranet operating environments. In FIG.
25, client 170 includes object manager layer 172 with viewer
process 192. Client 170 executes the core technology 180,
via accessing engine object layer 178 managed/stored on
server 176, and communicated via server 174. Viewer pro-

FIG. 23C is an illustration of another user selectable
interface for image viewing. In FIG. 23C, user interface
200" for image viewing includes viewing frame 202", with
single viewing area 204". Viewing area 204" includes at the
top right, previous page activator 208" and at the bottom left
next page indicator 212". Viewing area 204" also includes at
the left area document tools 210", and at the bottom status
indicator 214". Viewing area thus provides a user interface
to view a document that appears like a bound or more
traditional book. Advantageously, this user interface is
selectable and/or customizable by the user, as illustrated
below in connection with this figure and FIGS. 23A-23B.

3D cess 190 is also optionally available to either or both servers
174, 176.

Client 182, located on the same server 176 as core
technology 180 and engine object layer 178, may also be
used to execute the core technology 180 and/or viewer

FIG. 24 is an illustration of a stand-alone and/or distrib­
uted environment or architecture for image viewer in client
server and/or intranet operating environments. The architec­
ture in FIG. 24 provides the capability to perform the viewer
process off-line. That is, the viewer process 188 provides an
added feature on top of the object manager layer 14. As
described above, object manager layer 14 is essentially an
interface, and the viewer process 188 is an application that
leverages the object manager layer 14.

35 process 192 via object manager layer 184. In this instance,
the client 182 with the object manager layer 184 is located
on the same server 176 as the engine object layer 178. In
addition, since the present invention utilizes a communica­
tion protocol between components, for example, DCOM,

40 that allows a client to also include both the engine object
component layer, viewer process 194 and the object man­
ager layer on the same machine 186, as well as the core
technology.

Further, since the object manager is formatted or con-
45 structed of a client technology, the object manager can sit in

a standard browser. This means that anyone that has an
Internet browser, i.e., anyone that has access to the world
wide web (WEB) can actually access the core engine tech­
nology and/or viewer process. Thus, by structuring the

The advantage of the viewer process 188 being built on
the object manager layer 14, which is built on top of the
engine object layer 16, 18, 20, is that the viewer process can
offset its processing capabilities anywhere in a distributed
environment. It can have the processing occur at the local
station, on a server, and the like, as described below in detail.
Significantly, the object manager and the engine object
component are independent to provide a distributed envi- 55

ronment for using the present invention. Rather than com­
municate within the same technology between the object
manager and the engine object, the object manager and the
engine object component communicate with each other in
binary mode, via, for example, standard distributed campo- 60

nent object module (DCOM) communication.

50 architecture of the present invention as described herein,
users automatically become Internet, intranet and/or WEB
enabled.

As illustrated in FIG. 24, object manager 14 communi­
cates with engine object component 16, 18, 20 via DCOM
specification 166. Other types of component communication
may also be utilized that provide the capability of a distrib- 65

uted component interaction. Object manager 14 is also
respectively connectable to viewer process 188.

The present invention also transforms the core technology
and/or viewer process from essentially client based technol­
ogy into a client server and/or a thin client technology. This
makes the core technology high level and/or viewer process
accessible, thereby transforming any core technology and/or
viewer process into client server, or hidden client technol­
ogy. The browser is located on the client, and the browser
leverages the object manager. Accordingly, the browser
optionally contains the object manager, and the object
manager makes requests over, for example, the Internet,
local network, and the like via a server, to the engine object.
The server would be either a web server or a LAN server.

The present invention also advantageously provides the
ability to have the client and the server, in a distributed
environment as discussed above, or on the same machine

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 80 of 90

US 6,771,381 B1
69 70

locally. The present invention utilizes the DCOM commu­
nication protocol defining the communication protocol
between the object manager and the engine object compo­
nent. Accordingly, since DCOM can work on the same
machine as well as in a distributed environment, DCOM 5

does not necessitate that the engine object or the object
manager component be on two separate machines.

the business processes with which users are accustomed,
which is made possible by using Virtual Copier. Simple
extensions of Virtual Copier support seamless electronic
outsourcing of paper processing and archival services over
the web.

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper processing to
existing Intranet and client-server business processes with-

FIG. 26 is an illustration of a stand-alone and/or distrib­
uted environment or architecture for image viewer in net­
work environments, such as the Internet. As illustrated in
FIG. 21, object manager 14 communicates with engine
object component 16, 18, 20 via DCOM specification and a
networking environment, such as the Internet, intranet, and
the like 168. In addition, object manager layer 14 also
advantageously communications with viewer process 188a.
Other types of component communication may also be
utilized that provide the capability of a distributed compo­
nent interaction over a networking environment.

FIG. 27 is a detailed illustration of a stand-alone and/or

10 out any fuss. Whether it is an office clerk that needs to easily
copy a report from a desktop scanner to the company's
Intranet-networked copier, or an accounting software inte­
grator that wants to embed paper processing, Virtual Copier
offers a simple solution. To the office clerk Virtual Copier is

15 a document imaging application packaged in the familiar
setting of an office copier. To the integrator, the underlying
open architecture of Virtual Copier offers a simple integra­
tion path for embedding paper processing into its client­
server or web-based software solution.

Although managing paper manually is one of the great
problems facing corporations, there has been little inn ova­
tion in enabling those workers to eliminate the need to
continuously work with paper manually. Much of the prob­
lem stems from the complexity of traditional document

distributed environment or architecture for image viewer in 20

the Internet environment. In FIG. 27, client 170 includes
object manager layer 172. Browser/thin client 170a executes
the core technology 180 and/or viewer process 192a, via
accessing engine object layer 178 managed/stored on web
server 176a, and communicated via the Internet 174a.
Viewer process 190 is also optionally available to web
server 176a.

25 management systems, which require days of training and
months to become familiar with the system in order to be
proficient. Virtual Copier was designed to be as simple as a
copier to operate, and yet still provide the complete cap a­
bility of integrating paper with existing business applica-

Browser/thin client 182a, located on the same web server
176a as core technology 180, viewer process 192a and
engine object layer 178, may also be used to execute the core
technology 180 via object manager layer 184. In this
instance, the browser/thin client 182a with the object man­
ager layer 184 is located on the same web server 176a as the
engine object layer 178. In addition, since the present
invention utilizes a communication protocol between
components, for example, DCOM, that allows a client to
also include both the engine object component layer and the
object manager layer on the same machine 186, as well as
the core technology and viewer process.

30 tions. By simplifying the interface and underlying software
infrastructure, VC can manage paper in electronic form as
easily as is currently done in physical form.

VC extends the notion of a copier, which simply replicates
the image of an original document onto another piece of

35 paper using a single GO or START button, to do a similar
operation in software so that the image gets seamlessly
replicated into other devices or applications or the Internet.

An example of this is the actual implementation of Virtual
Copier as a consumer product. As shown in FIGS. 28 and 29,

40 the interface of the consumer product called Virtual Copier
has a Go button much like a physical copier. This GO button
can copy paper, whether physical or electronic, from one
device and or application to another device and/or applica­
tion.

The purpose of the Virtual Copier ("VC") aspect of the
present invention is to enable a typical PC user to add
electronic paper processing to their existing business pro­
cess. VC is an extension of the concept we understand as
copying. In its simplest form it extends the notion of copying
from a process that involves paper going through a conven- 45

tional copier device, to a process that involves paper being
scanned from a device at one location and copied to a device

What makes Virtual Copier as simple as its physical
counterpart in at least one embodiment is the fact that it
replicates the identical motions that a user who is making a
copy using a physical photocopier goes through. When a
user photocopies a document, he/she selects where they
want to copy from (i.e. the sheet feeder), where the user
wants to copy to (i.e. 6 copies collated and stapled) and then

at another location. In its more sophisticated form, VC can
copy paper from a device at one location directly into a
business application residing on a network or on the Internet, 50

or visa versa. The VC invention is software that manages
paper so that it can be electronically and seamlessly copied
in and out of devices and business applications (such as
Microsoft Office, Microsoft Exchange, Lotus Notes) with an
optional single-step Go operation. The VC software can 55

reside on a PC, LAN/WAN server, digital device (such as a
digital copier), or on a web server to be accessed over the
Internet.

presses a GO button to actually carry out the photocopy
process. With Virtual Copier the process feels familiar
because the sequence is the same as illustrated in FIG. 30
with just the Power VC portion of the main Virtual Copier
window.

The power of Virtual Copier is the fact that the From can
be a physical device (e.g. digital copier, fax or scanner) or
an application (e.g. Lotus Notes, Microsoft Exchange, the Virtual Copier is designed to solve the corporate paper

problem by enabling existing web-based and client-server
applications to manage paper as part of their solution.
Virtual Copier links the familiar and universal world of
paper and digital devices to web-based and client-server
applications. The result is that the automated business pro­
cesses become the primary storage of paper in electronic
form. Information that is typically managed and processed
in paper form is "copied" into the system and managed by

60 Internet, or an electronic filing system). The To can also be
a physical device (e.g. a fax, digital copier, or printer) or an
application (e.g. Lotus Notes, Microsoft Exchange, the
Internet, or an electronic filing system). Even though paper
is being copied electronically from devices to applications,

65 from applications to devices, from devices to devices, or
from applications to applications, the user simply has one
sequence to execute: select From, select To, and then press

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 81 of 90

US 6,771,381 B1
71

GO. Virtual Copier will accomplish all translations between
device and applications automatically and seamlessly.

Another reason that paper is still a major corporate issue
is that traditional document management systems require
that a company invest in a whole new system just to store 5

electronic images. Although this is the only way that docu­
ment management systems have been designed and
delivered, it is in fact highly inefficient. Most companies
already manage information about physical documents in
some form of software applications. 10

For example, accounting systems have long been used to
maintain information about invoices and bills that arrive into
a company from outside sources as physical pieces of paper.
When an invoice arrives, its information is keyed into the
accounting software, where balances are maintained and 15

accounts payable information is coordinated. Yet the original
invoice is stored manually, and every time that a request is
made for a copy of the signed invoice, someone manually
retrieves the invoice from a physical filing cabinet. Account­
ing systems, like most business applications, typically have 20

no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an
accounting system is cumbersome, costly, and difficult to
maintain, and even more difficult to coordinate.

Virtual Copier solves this problem in at least one embodi- 25

ment by copying paper directly into the existing accounting
system. Simply adding a To item in the Virtual Copier
window enables a user to copy paper directly into the
appropriate accounting record of the existing accounting
system. This requires no retraining (users who are trained on 30

the accounting system will still use the accounting system in
the same way), requires no document management system
(the electronic copy of the document is actually being
maintained by the accounting system itself), there is no
coordination between two systems (Virtual Copier embeds 35

the invoice with the appropriate accounting record), and it is
simple (one Go button).

What is true with regard to the example above of an
accounting system is true of most other business applica­
tions. The power of Virtual Copier is that it can turn an 40

information system into a document management system by
adding support for electronic paper directly into the existing
business application, whether it is a client, server-based, or
web-based system.

Virtual Copier enables corporations to perform sophisti- 45

cated document imaging with their existing Web-based and
client-server applications through a user interface that is as
familiar as the office copier. Virtual Copier can be used
out-of-the-box as a standalone application to copy, scan, fax,
or print images using existing digital devices within corpo- 50

rate environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into
Web-based and client server applications, such as ERP or
accounting systems, to eliminate paper from existing busi­
ness processes and legacy applications. Virtual Copier can 55

also be used to support seamless access to document image
processing and archival over the web since, in at least one
embodiment, the VC interface is implemented as a software
application.

72
an aspect that is found on a conventional copier. Based on
the modular design of VC, each aspect of VC can be
independently extended, offering much greater flexibility
than conventional copiers.

The five core modules of VC illustrated in FIG. 31 are:

Input Module-The Input Module manages paper or
electronic paper entering VC. This module manages
imaging devices to input paper through scanners,
MFPs, or the new breed of digital copiers. The Input
Module also manages reading electronic paper from
third-party or proprietary applications. The counterpart
to VC's Input Module on a conventional copier is the
scanner subsystem.

Output Module-The Output Module manages paper or
electronic paper exiting VC. Like the Input Module,
this module manages imaging devices to output paper
to standard Windows printers, specialty image printers,
MFPs, or the new breed of digital copiers. The Output
Module also manages writing electronic paper to third­
party or proprietary applications. The counterpart to
VC's Output Module on a conventional copier is the
printer or fax subsystem.

Process Module-The Process Module applies processing
to the electronic paper as it is being copied. Examples
of a process are OCR and ICR. The Process Module can
also apply non-imaging functionality as well, such as
workflow or other relevant tie-ins to the electronic
paper as it is being copied. One of the advantages ofVC
over conventional copiers is that multiple processes can
be applied to a single virtual copy. The counterpart to
VC's Process Module on a conventional copier is the
controller.

Client Module-The Client Module presents the elec­
tronic paper as it is being copied, and any relevant
information related to the input or output functions. For
example, if the Output Module is directed to a printer,
then the Client Module might present the finishing
capabilities; if the Output Module is directed to
Goldmine, then the Client Module might present the
target contact record to which the document is being
copied. The counterpart to VC's Client Module on a
conventional copier is the panel.

Server Module-Unlike conventional copiers, VC's
Server Module is a unique subsystem that can commu­
nicate with the other modules as well as third-party
applications. The Server Module is what makes VC a
far more powerful concept than simply an application
that can control a scanner and a printer to mimic a
copier. The Server Module can be used to combine
third-party applications with the new breed of digital
imaging devices to create unique and custom virtual
copier solutions. A virtual copier can be created with
VC by combining a scanner with a printer; or by
combining a scanner with an application; or by comb­
ing an application with an image printer. In each case
VC is dynamically creating a custom virtual copier,
with a complete understanding of how paper flows
from the source to its destination. There is no counter-
part to VC's Server Module on a conventional copier.

One of the primary design goals of VC is to make it
simple to integrate VC with third-party applications. There
are two options to integrating VC into a third-party appli­
cation: running VC as an external service, or embedding VC

VC is architected as an application that delivers end-user 60

functionality while remaining open to third-parties exten­
sions. For example, VC can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The
only difference is that VC does not distinguish between
electronic and physical paper. 65 as an underlying service.

To accommodate third-party extensions, VC is divided
into five essential modules. Each module is a counterpart to

VC is in one embodiment and optionally a standalone
application that enables a user to scan (copy) paper from a

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 82 of 90

US 6,771,381 B1
73

device to a third-party application, and to print (copy) the
reference of an image document from a third-party applica­
tion to a printing device. VC does not require the third-party
application to be aware that VC is operating. Rather, VC
recognizes that the third-party application is running, and it 5

intelligently copies paper to and from that application as
illustrated in FIG. 32.

In this scenario the user is interacting with VC's Client
Module in order to execute a copy operation to and from the
third-party application. There does not have to be any 10

changes made to the third-party application, not even to its
interface, in order for VC to operate. The user of VC only
knows that to copy to and from the third-party application,
a custom Input and Output Module must be selected, and the
Go button is pressed. 15

In order to support copying to and from a third-party
application, VC must be able to support extensions that
understand each third-party application. This is accom­
plished through the Input and Output Modules. The Client,
Server, and even Process Modules remain independent 20

across third-party applications. However, in order to support
outputting to a third-party application, an Output Module is
developed that is unique to that third-party application.
Likewise, an Input Module is developed that is unique to a
third-party application in order to support reading images 25

from that application.

74
Server Module coordinates the activities of the various
modules while maintaining the information regarding the
current process and document. It also collects and passes
information from one module to another regarding the
document and process. Events and an API are used to control
the modules and their interaction with each other as well as
with the Server Module.
The following are the main functions of the Server Module:

Enable Virtual Copy Operation-The Server Module pro­
vides simple methods to initiate, cancel, and reset VC.
The API is designed to imitate the simplicity of using
a conventional copier.

Maintain List of Available Modules-The Windows reg­
istry contains the list of available Input, Output, and
Process Modules that can be used with VC. The Server
Modules reads this list on startup, and maintains it in
the Modules object that can be accessed by the other
modules. Although each module can read this informa-
tion directly from the registry, it is preferable to use the
Modules object. All information regarding the available
modules can be found in the Modules object.

Maintain the Currently Active Modules-The Server
Module maintains the current Input, Output, and Pro­
cess Modules that are being used for the current virtual
copy operation. This is maintained in the Program
object. This information can also be saved to disk in a
Process Template file.

Maintain Complete Document Information-The Server
Module maintains all the information regarding the
current file being copied. This is maintained in the
VDocument object. This information can also be saved
to disk in a Document Template file.

As with other design elements of VC, the VC logic flow

It is the optional Input and Output Modules that render
VC extendable. For each third-party application there is a
unique pair of Input and Output Modules that understand the
third-party application, and how to copy images to and from 30

that application. Each Input and Output Module registers
itself to the Windows registry so that the Server Module
knows how to find them. In this way Virtual Copier can grow
indefinitely, to support any number of third-party applica­
tions.

The significant point is that the Input and Output Modules
have their own interface, and can be developed indepen­
dently from any other module. As long as the Input and
Output Module conform to the API specified in this docu­
ment it will plug-and-play with VC. VC will be able to mix 40

and match the custom Input and Output Module with its
standard and other custom Input and Output Modules.

35
illustrated in FIG. 34 parallels the basic logic flow of a
conventional copier. In a conventional copier, paper is pulled
into the copier, processed, and output. Likewise, in VC the
Server Module initiates the Input Module, Process Module,
and Output Module in that sequence. Unlike a conventional

A third-party application can also use the services of VC
without its user interface. That is, a third-party application
can embed VC's functionality and provide its own interface 45

to its functionality. For example, rather than have VC as a
separate application, a special button can be placed on a
third-party application that launches VC in the background

copier which does not have the ability to update its panel,
VC updates its Client Module as well as the results of each
Module acting on the document as illustrated in FIG. 35.

All actions to create, process, and write images are the
responsibility of the Input, Process, and Output Modules
respectively. The Server Module is a scheduler of activities,
providing the information and initiating the modules at the
appropriate time in the virtual copy operation. The Server
Module manages the other Modules. It does not know about
the internal workings of the modules, nor the contents of the

as illustrated in FIG. 33.
50

information being copied. The Server Module API is suffi­
ciently rich to maintain all the information necessary for a
basic virtual copy operation.

VC is designed so that the Server Module can run
independently from the Client Module. All the core
functionality, including communicating with the Input,
Output, and Process Modules, are performed directly by the
Server Module. The Client Module is generally simply an
interface to the Server Module. Therefore, all the services of 55

the Server Module can be made available in the background
to a third-party application without the need for an interface.
The third-party application can in fact become the user's
interface to VC.

In order to support VC operating in the background a 60

third-party application merely has to communicate with the
Server Module directly, as described later in this document.
The Server Module, as all modules in VC, support COM­
based interfaces for simple and direct support from all major
Windows development environments. 65

At the heart of VC is the Server Module. A virtual copy
operation can only be initiated using the Server Module. The

The Server Module API is divided, for example, into the
following COM-based interfaces:

Modules Object-This object maintains the list of avail­
able Input, Output, and Process Modules

Program Object-This object maintains the currently
selected Input, Output, and Process Modules

VDocument Object-This object maintains the informa­
tion regarding the current document that is being cop­
ied

VC Methods-These methods are used to initiate, cancel,
and reset VC

VC Events-These events are used to provide feedback to
the Client Module

The purpose of the Modules object is to provide the Client
Module with the full list of available Input, Output, and

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 83 of 90

US 6,771,381 B1
75

Process Modules that is available to the user. The Client
Module can obtain the user-readable names for each module,
as well as its icon and other key information. The Modules
object is primarily used to seed list or combo boxes that
provide the end-user with a choice of modules from which
to select.

In a preferred embodiment, the Modules Object has, for
example, the following structure illustrated in FIG. 36,
however, alternative structures and/or functionality may
optionally be used for this object and/or other objects used
in the present invention:

Name
Type
Format
Description

Sample
Name
Type

Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format

Description

Sample
Name
Type

Format

Description

Configure
Method
.Configure()
The Configure method causes the module to
prompt the user for configuration information.
Each module maintains its own configuration
dialog, and therefore may look different
than other modules.
VCopier.InputModules(1).Configure()
Default
Property; Object of type InputModule,
OutputModule, or ProcessModule
.Default - Read Only
The Default property identifies the default
module that the Server Module will use at
startup or if no other module is identified.
MylnputModule ~ VCopier.InputModules.Default
ID
Property; BSTR
.!0- Read Only
The ID property identifies the Prog!D of a
module. The Prog!D can be used to derive
other information about the module,
including its Icon.
ModuleName ~ VCopier.InputModules(1).ID
File
Property; BSTR
.File-Read Only
The File property identifies the full
pathname of the physical file of
a module.
FileName~ VCopier.InputModules(1).File
InputModule, OutputModule, ProcessModule
Object
.InputModule, .OutputModule, .ProcessModule­
Read Only
The InputModule, OutputModule and ProcessModule
are the individual objects maintains by the
InputModules, OutputModules, and ProcessModules
collections respectively. Each one of these objects
has the following elements:
Name
ID
File
Configure
The Name property is BSTR that is the user­
readable name of the module. The ID is a BSTR
that represents the Progld of the module.
The File property is a BSTR that is the
full pathname of the module. The Configure
method prompts the user with a dialog for
configuring that module.
MylnputModule ~ VCopier.InputModules(2)
InputModules, OutputModules, ProcessModules
Collection of InputModule, OutputModule, and
ProcessModule objects respectively
.InputModules, .OutputModules, .ProcessModules­
Read Only
The InputModules, OutputModules, and
ProcessModules collections maintain the list
of available modules for each category. Each
collection maintain the following information:
InputModule/OutputModule/ProcessModule
Default

5

10

15

20

25

30

35

40

45

50

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample

Name
Type
Format
Description

Sample

Name
Type
Format
Description

Sample

76

-continued

The first element is the individual module in
the collection of modules that are available
to VC. The Default object is the default module
that VC uses at startup. The Server Module
maintains these collections under the Modules
object.
MylnputModule ~ VCopier.InputModules(2)
Is Loaded
Method, Boolean
.IsLoaded()
The IsLoaded method returns True if the module
is loaded into memory, and False if it is not.
ModuleName ~ VCopier.InputModules(1).IsLoaded
Load
Method
.Load()
The Load method manually loads the module into
memory. Once a module is loaded in VC it remains
in memory until it is specifically unloaded
using the Unload method, or the program exits.
ModuleName ~ VCopier.InputModules(1).Load
Name
Property, BSTR
.Name-Read Only
The Name property identifies the user-readable
name of a module. This name can be used in a
list box for a user to select the module.
ModuleName ~ VCopier.InputModules(1).Name
ResetSettings
Method
.ResetSettings()
The ResetSettings method returns the settings of
the module back to its original state when the
VC first called it. A user can change the settings
of a module when it is configured. This method is
used to role back changes made bu a user during
the VC session. To save the settings between
sessions, use the SaveSettingsAsDefault method.
ModuleName ~ VCopier.InputModules(1).
ResetSettings()
SaveSettingsAsDefault
Method
.SaveSettingsAsDefault()
The SaveSettingsAsDefault method save any
changes to the settingst the user has done
during the session to disk so that they
become the new settinsg.
ModuleName ~ VCopier.InputModules(1).
ResetSettings()
Unload
Method
.UnLoad()
The Unload method manually unloads the module
from memory. Once a module is loaded in VC it
remains in memory until it is specifically
unloaded using the Unload method, or the
program exits.
ModuleName ~ VCopier.InputModules(1).Unload()

The Program Object maintains the currently selected
Input, Output, and Process Modules. It is generally set by the
Client Module based on input from a user. However, in
applications that do not have a user interface the program

55 object can be used to directly set the modules to run VC. The
Program Object has the following structure illustrated in
FIG. 37.

All elements of the Program Object are defined in the
Modules Object section. The VDocument Object maintains

60
information about the current document being copied. The
VDocument represents a virtual document rather than a
physical one. It is designed to allow the flexible management
of multi-image files that together constitute an document.
The internal VDocument maps to physical files as illustrated
in FIG. 38.

65 The VDocument Object calculates the total number of
pages of all the files associated with it, and lays out each
page of each document in a single virtual document. As the

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 84 of 90

US 6,771,381 B1
77 78

figure illustrates, if 4 files contain a total of 8 pages, then
VDocument considers this an 8 page document. If the 6'h
page is requested, VDocument will return the second page of
File C in the above figure. This enables VDocument to
handle single page files that together constitute a document 5

(as is the case with many of the new digital copiers), or a
single multi-page image file, or any combination of the two.
The VDocument Object is illustrated in FIG. 39 and below.

Sample
Name
Type
Format
Description

-continued

MyPage ~ VCopier.VPages(2)
Vpages
Collection of Page objects
.Vpages
The VPages collection contains one VPage
object per virtual page. Each page of each
image file that is tracked by VDocument is
considered a unique page, and its information
is maintained by a VPage object.

Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Add
Method
.Add(BSTR File, Long Page)
The Add method is used to add a page to the VPages
collection. The two arguments File and Page represent
the disk file and the page number to associate with
the new page in VPages. One page of one file is added
at a time using this method.
VDocument.Add(FileA, 2)
Auto Delete
Property, Boolean
.AutoDelete
The AutoDelete property lets the Server Module
know whether to delete the files once the
virtual copy operation is completed. When set to
True the Server Module will delete the physical disk
files maintained in V document either before the next
virtual copy operation, or when VC is shut down.
When set to False V document is cleared of its contents
between virtual copy operations, but the actual files
are not deleted from the disk. In general if the
VDocument object points to existing files then
Auto Delete should be set to False. If the VDocument
object points to temporary files, then Auto Delete
should be set to True so that the disk files are
cleaned up (i.e. deleted) by the Server Module.
By default Auto Delete is set to False.
VCopier. VDocument.AutoDelete ~ True
Clear
Method
.Clear()
The Clear method is used to empty the contents
of the Vdocument object. The VPages object is
emptied and the reference to files are deleted
in conformance with the Auto Delete property.
VDocument.Clear()
File
Property, BSTR
.File
The File property of the VPage object points
to the disk file that contains the image
associated with the VPage page.
MyFile ~ VDocument.VPages(2).File
Page
Property, Long
. Page
The Page property of the VPage object points
to the image offset into the disk file that
contains the image associated with the
VPage page.
MyPage ~ VDocument.VPages(2).Page
Remove
Method
.Remove()
The Remove method is used to remove a page
from the VPages collection. The single
argument Index is the offset page into the
VPages collection.
VDocument.VPages(2).Remove()
Vpage
Object
.Vpage
Each VPage object represents a single
virtual page in the VDocument object. Each
VPage object contains the name of the file
that contains its virtual page in the .File
propety, and a .Page property which is the
page offset in the image file.

10
Sample MyPage ~ VCopier.VPages(2)

The Server Module supports simple methods that accom­
plish the basic copier functionality of go, cancel, and reset.

15 The Server Modules has the following structure:

Name

20
Type
Format
Description

Sample
25 Name

Type
Format
Description

30

Sample
Name
Type

35 Format
Description

Cancel
Method
.Cancel()
The Cancel method is used to cancel the currently
running virtual copy operation. The Cancel method
can only be used once the Go method is called
and prior to its completion.
VCopier.Cancel()
Go
Method
.Go()
The Go method is used to initiate a virtual
copy operation. It calls the modules in the following
sequence: Program.InputModule, Program.ProcessModules,
and then Program.OutputModule. The virtual copy
operation can be cancelled prior to its completion
by calling the Cancel method.
VCopier.Go()
Reset
Method
.Reset()

40
Sample

The Reset method is used to clear the contents
of the Program object. After calling the Reset
method VC is considered to have no assigned
Input and Output modules selected. The modules
that are reset are not unloaded from memory.
VCopier.Reset()

The are two events that the Server Module supports: Error
and Status. The Error event is generated anytime any of the
Modules produce an error condition. The Status event is

45 generated when information needs to be transferred between
the lOP or Server Modules and the Client Module.

50

55

60

65

The following are details for each event, illustrated in
FIGS. 40 and 41 and below .

Name Error
Type Event
Format .Error(...)
Description The Error event is triggered whenever there is

an error by one of the modules. The error can be
trapped and displayed or processed by the Client
Module.

Sample
Name ErrorCode
Type Argument, Long
Format .ErrorCode
Description The ErrorCode argument of the Error

event identifies the actual error code. There are no
predefined error codes for all modules. Each
module produces its own set of error codes.

Sample
Name ErrorText
Type Argument, BSTR
Format .ErrorText

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 85 of 90

Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

US 6,771,381 B1
79

-continued

The ErrorText argument of the Error
event identifies the actual error text. There
are no predefined error texts for all modules.
Each module produces its own text for its error
codes.

Module!D
Argument, BSTR
.Module!D
The Module!D argument of the Error event
identifies the source of the error condition. The
Module!D is defined as the version-dependent Prog!D.

Severity
Argument, Long
.Severity
The Severity argument of the Error event identifies
the level of error condition. The following levels
are currently implemented:
1-Severe
2-Warning

SubModule!D
Argument, BSTR
.SubModule!D
The SubModule!D argument of the Error event
identifies the secondary source of the error condition.
The SubModule!D can defined as the version-dependent
Prog!D, or any other value determined by the Module
that generates the error condition.

URL
Argument, BSTR
.URL
The URL argument of the Error event
identifies the URL address (web site, HrML file,
or resource file URL), that contains the HrML
representation of the error condition. The
information presented can be more dynamic as well
as formatted than the ErrorText argument.

Info1, Info2
Argument, Variant
.Info1, .Info2
The Info1 and Info2 arguments of the Status
event are placeholders for additional information
that needs to be supplied with specific status numbers.

Status
Evenet
.Status(...)
The Status event is trigerred by any of the modules
when there is information that needs to be relayed to the
user or the Client Module.

StatusNumber
Argument, Long
.StatusNumber
The StatusNumber argument of the Status
event identifies the actual status code. The values
between 1 and 1000 are private and cannot be
generated by an lOP Module for private use. Any
other status numbers are open for private lOP
Module use.

StatusText
Argument, BSTR
.StatusText
The StatusText argument of the Status event
identifies the actual status text.

StatusType
Argument, BSTR
.StatusType
The StatusType argument of the Status event
identifies the type of status.

80

-continued

1 - Informational
2 - Instruction

5 Sample

The Server Module broadcasts the Status event to the
Client Module. There are standard status events that the
Server Module generates which the Client Module can rely

10 on. These are the events that manage the flow of modules
and user interaction with the Server Module. The following
is a general workflow of the events that are generated is
illustrated in FIG. 42.

15

20

25

30

35

40

StatusNumber StatusText

VseModuleCanceled

VseModuleConfigureEnd

Description

The lOP Module canceled
the operation by setting
the Cancel argument in the
Feedback.Error or
Feedback.Status methods
to True
The lOP Module has
completed presenting its
configuration dialog

VseModuleConfigureStart The lOP Module has started
presenting its configuration
dialog

VseModuleGoEnd The lOP Module has ended
executing

VseModuleGoStart The lOP Module has started
executing

VseModuleLoadEnd The lOP Module has
completed loading

VseModuleLoadStart The lOP Module has started
loading

VseModuleUnloadEnd The lOP Module has
completed unloading

VseModuleUnloadStart The lOP Module has started
unloading

VseProgramCanceled The Server Module has
canceled executing (using
the .Cancel method)

VseProgramEnd The Server Module has
ended executing

VseProgramStart The Server Module has
started executing a
Go operation

45 The Client Module presents to the user information
regarding the copy process, and initiates the virtual copy
through the Server Module. The Client Module can be a GUI
that Imagination Software develops, or a third-party appli­
cation that directly communicates with the Server Module.

50 The goal of the Client Module is to capture sufficient
information and pass that information along to the Server
Module in order to initiate a single virtual copy.

The Client Module follows the following general logic
flow illustrated in FIG. 43. The first step for the Client

55
Module is to determine that the Server Module exists, and to
successfully launch the Server Module. This is done using a
standard COM interface.

If the Client Module is a GUI then it can present icons and
the names of all the available Input, Output, and Process
Modules for the user to select. The Client Module does not

60 need to know any information about these modules. All
names and Prodld's are available from the Server Module
API using the Modules Object.

If the user selects a new Input or Output module, the
Client Module updates the appropriate

65 Program.InputModule, Program.OutputModule, or Pro­
gram. Process Modules object available on the Server Mod­
ule.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 86 of 90

US 6,771,381 B1
81

At any time the Client Module can initiate the Go method
of the Server Module. This is a synchronous process-once
the Go method is initiated the only way to stop it is to call
the Cancel method. Only one Go method can be called at a
time, and it must run to completion before another one is 5
called.

82
the module. The two parameters are the VDocument
object, which contains the information about the cur­
rent document being copied. The module can update
the VDocument with additional images, as is typical of
an Input Module, or simply read and process the
document, as is typical of an Output Module. The
second parameter is a Feedback object, which contains
the two events that the lOP module can generate back
to the Server Module.

During the virtual copy, the Server Module will send back
Status and Error events that should be processed and dis­
played (if there is a GUI) by the Client Module. The only
requirement for a Client Module is that it at least substan-

10
tially conforms to the interface described in the Server
Module section. The architecture described in this section,
and its associated sample source code, is designed to facili­
tate development of Client Modules by third parties. It
should be used as a guide for developing a Client Module­

Name
Type

15 Format
it is not the only way a Client Module can be designed.

Configure
Method
.Configure()

The internal architecture described below is generally
independent from the interface requirements for a Client
Module. The Client interface must be implemented regard­
less of whether or not the Client is designed with the

20
architecture described in this section. The basic Client
architecture is illustrated in FIG. 44.

The Input, Process, and Output ("lOP") Modules extend
VC by enabling specialized hardware and software to inter-
act with VC. Each lOP Module understands the input,

25
output, or processing capabilities of a specific technology, as
well as how to communicate with the Server Module. In this
way an lOP Module can read or write images to and from
any device or software application while still being managed
by the Server Module. To the user of VC, interacting with

30
any device or software application is the same.

Description

Sample
Name
Type
Format
Description

The Configure method causes the module to
prompt the user for configuration information.
Each module maintains its own configuration dialog,
and therefore may look different than other
modules.
MylnputModule.Configure()
Go
Method
.Go(VDocument, Feedback)
The Go method is called by the Server Module
to initiate the lOP module to execute its part
of the virtual copy operation. The V document
Object is passed along as an argument so
that the lOP module can add to or read the current
document that is being processed. Refer to the
Server Module section for a complete description
of the VDocument object.
The second parameter of the Go method is a
Feedback object. The Feedback object
enables the lOP module to send status and
error updates back to the Server Module.
These events are also described in the
Server Module section.

The lOP Modules share a common API to facilitate
communication with each other, with the Server Module, as
well as with third-party programs. The interface is based on
COM. Both the Server Module as well as third-party appli­
cations can communicate with the Input, Process, and Out­
put Modules using the specified COM interface.
Additionally, third-party vendors can create their own ver­
sions of the Input, Process, and Output Modules as long as

35 ~::le lOP.Go(VDocument, Feedback)
ResetSettings

Type
Format
Description

Method
.ResetSettings()
The ResetSettings method returns the settings of
the module back to its original state when it

they conform to the specified COM interface.
40

The following are the main functions of the Input,
Process, and Output ("lOP") Modules:

was first called. A user can change the settings
of a module when it is configured. This method

Respond to Server Module Go() Method-The Server
Module calls the other modules using a COM-based
Go() method. All necessary information regarding the
virtual copy operation is passed along using arguments
of the Go() method. The lOP module can then handle
its internal operation independent of any other module.

Generate Status & Error Feedback-The lOP module
should let the Server Module know its progress, error
conditions, or any other useful process or userbased
information.

Initiate Communication With the Server Module-The
lOP Module can at any time initiate communication
with the Server Module to provide new information.
This enables the lOP Module to pole the device or
software application that it is linked to, and convey that
information back to the Server Module.

The API for the Input, Process, and Output Modules are
deliberately made simple so that third-party vendors can
create their own custom versions of these modules with
relative ease. The API, illustrated in FIG. 45, consists of the
following COM-based interface:

Sample

45
Name
Type
Format
Description

50 Sample

is used to role back changes made by a user during the
VC session. To save the settings between sessions,
use the SaveSettingsAsDeafult method.
MylnputModule.ResetSettings()
SaveSettingsAsDefauft
Method
.SaveSettingsAsDefault()
The SaveSettingsAsDefault method save any changes
to the settings the user has done during this
session to disk so that they become the new settings.
MylnputModule.ResetSettings()

The Feedback object illustrated in FIGS. 46-47 is used to
communicate between the lOP and the Server Module. The

55 Feedback object supports two methods that are used like
events. The purpose of this mechanism is to limit the
communication between the lOP and the Server Module to
just those objects presented to the lOP Module by the Server
Module through the Go method. In this way the lOP Module

60 is handed all the information it needs to execute its part of
a copy operation.

Go(VDocument, Feedback)-This is the single method
that initiates a module to complete its phase of the 65

virtual copy. The Go() method is called by the Server
Module when it is ready to execute the functionality of

The Feedback object contains two methods: Error and
Status. The Error event is used to respond back to the Server
Module all error conditions. The Status method is used to
communicate back to the Server Module all information
updates, such as progress.

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 87 of 90

US 6,771,381 B1
83

The following are details for each of these methods:

Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format
Description

Sample
Name
Type
Format

Cancel
Argument, Boolean Reference
.Cancel
The Cancel argument of the Error method is used
to establish whether the Server Module will
continue with the virtual copy operation once
this lOP is completed. If set to True then the
Server Module will not continue its cirtual
copy operation. The Server Module will wait
until the lOP Module returns on its own.
The Server Module does not shut down the
lOP Module.

Error
Method
.Error(...)
The Error event is triggered whenever there is an
error by one of the modules. The error can be
trapped and displayed or processed by the Client
Module.

ErrorCode
Argument, Long
.ErrorCode
The ErrorCode argument of the Error event
identifies the actual error code. There are
no predefined error codes for all modules.
Each module produces its own set of error codes.

ErrorText
Argument, BSTR
. ErrorText
The ErrorText argument of the Error event
identifies the actual error text. There are
no predefined error texts for all modules. Each
module produces its own text for its error codes.

Severity
Argument, Long
.Severity
The Severity argument of the Error event identifies
the level of error condition. The following levels
are currently implemented:
1 - Severe
2- Warning

SubModule!D
Argument, BSTR
.SubModule!D
The SubModule!D argument of the Error event
identifies the secondary source of the error
condition. The SubModule!D can defined as the
version-dependent ProgiD, or any other value
determined by the Module that generates the
error condition.

URL
Argument, BSTR
.URL
The URL argument of the Error event identifies
the URL address (web site, HrML file, or resource
file URL), that contains the HrML representation
of the error condition. The information presented
can be more dynamic as well as formatted than the
ErrorText argument.

StatusText
Argument, BSTR
.StatusText
The StatusText argument of the Status
event identifies the actual status text.

StatusType
Argument, BSTR
.StatusType

5

Description

Sample

84

-continued

The StatusType argument of the Status
event identifies the type of status.
1 - Informational
2 - Instruction

The only requirement for an lOP Module is that it
10 substantially conforms to the interface described earlier. The

architecture described in this section, and its associated
sample source code, is designed to facilitate development of
lOP Modules by third parties. It should be used as a guide
for developing an lOP Module-it is not the only way an

15 lOP Module can be designed.
The internal architecture described below is independent

from the interface requirements for an lOP. The lOP inter­
face must be implemented regardless of whether or not the
lOP is designed with the architecture described in this

20
section. The basic lOP architecture is illustrated in FIG. 48.

The lOP Module has a fixed set of features that it needs
to perform:

25

Interface with the Server Module
Execute its operation when its Go() method is called
Respond to requests by the Server Module to configure its

settings
Although any lOP Module that meets the lOP API

requirements specified earlier will function properly, the
proposed architecture simplifies the development of lOP

30
Modules and ensures greater flexibility .
The internal Interface class has two purposes:

35

Communicate with the Server Module
Marshall requests to, from, and between the Execute and

Configuration classes
In order to communication with the Server Module the

Interface class must support the COM protocol. All modules
within VC communicate via COM. This class should be
created with the exact API specified earlier. Additionally, the
Interface class should maintain the Feedback object passed

40 in by the Server Module's Go method. This way all com­
munication to the Feedback object will be handled by the
Interface class, rather than by the Execute or Configuration
classes.

The primary purpose of the Execute class is to execute the

45 Go method when it is called by the Server Module. This is
the core functionality of the lOP Module. Each lOP Module
will have its own mechanism for executing its part of a
virtual copy operation.

Any configuration information is assumed to have been

50 passed to the Execute class by the time it is being called.

55

60

Since the Execute class does not directly communicate with
the Configuration class, any information that needs to be
shared between the two classes must be coordinated by the
Interface class.

The Configuration class maintains all the configuration
data necessary for the lOP Module to operate. This includes
responding to the Server Module to:

Prompt the user with a Configuration dialog
Save the current configuration information to persistent

storage
Restoring the last saved configuration information from

persistent storage
Since the lOP Module is entirely responsible for these

activities, any programming method that accomplishes these
65 tasks is legitimate.

The many features and advantages of the invention are
apparent from the detailed specification, and thus, it is

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 88 of 90

US 6,771,381 B1
85 86

includes the capability to integrate the electronic images into
a destination application without the need to modify the
destination application.

5. A computer data management system according to

intended by the appended claims to cover all such features
and advantages of the invention which fall within the true
spirit and scope of the invention. Further, since numerous
modifications and variations will readily occur to those
skilled in the art, it is not desired to limit the invention to the
exact construction and operation illustrated and described,
and accordingly, all suitable modifications and equivalents
may be resorted to, falling within the scope of the invention.

For example, while the above discussion has separated the
various functions into separate layers of functionality, the
layers may be combined, physically and/or logically, and
various functions may be combined together. While com­
bining various functions into same or common layers may
make implementation details more cumbersome,
nevertheless, the functions described herein may still be
accomplished to advantageously provide some or all of the
benefits of the invention described herein.

5 claim 1, wherein the computer data management system
includes an interface that enables copying images between
physical devices, applications, and the Internet using a
single "GO" operation.

6. A computer data management system according to
10 claim 1, wherein the computer data management system

includes the capability of adding at least one of electronic
document and paper processing with a single programming
step.

7. A computer data management system according to
15 claim 1, wherein the software application comprises:

Further, as indicated herein, the present invention may be
used to automate and/or manually expedite the migration of
a program specific Application Programmer Interface from
an original state into a generic interface by building an 20

object for each engine. The object advantageously provides
substantially uniform access to the engine and engine set­
tings associated with the engine. The present invention amy
be applied across a broad range of programming languages
that utilize similar concepts as described herein.

I claim:
25

1. A computer data management system including at least
one of an electronic image, graphics and document man­
agement system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu- 30
ment to a plurality of external destinations including one or
more of external devices and applications responsively
connectable at least one of locally and via the Internet,
comprising:

at least one output module managing the data output from
the computer data management system, managing at
least one imaging device to output the data to at least
one of a standard Windows printer, an image printer,
and a digital copier, and managing the output of the
data to the third-party software application;

at least one process module applying at least one data
processing to the data comprising the at least one of the
paper and the electronic paper as it is being copied,
applying additional functionality including at least one
of workflow and processing functionality to the data
comprising the at least one of paper and electronic
paper as it is being copied, and applying multiple
processes to a single virtual copy; and

at least one client module presenting the data comprising
the at least one of paper and electronic paper as it is
being copied, and information related to at least one of
the input and output functions.

at least one memory storing a plurality of interface
protocols for interfacing and communicating;

at least one processor responsively connectable to said at
least one memory, and implementing the plurality of
interface protocols as a software application for inter­
facing and communicating with the plurality of external
destinations including the one or more of the external
devices and applications, wherein said software appli­
cation comprises at least one of:

8. A computer data management system according to
35 claim 1, wherein the one or more of the external devices and

applications integrates the computer data management sys­
tem into an external application via one of running the
computer data management system, as an external service
and embedding the computer data management system as an

40 embedded service.

at least one input module managing data comprising at
least one of paper and electronic paper input to the 45

computer data management system, and managing at
least one imaging device to input the data through at
least one of a scanner and a digital copier, and
managing the electronic paper from at least one
third-party software applications; and 50

at least one module communicable with said at least
one input, output, client, and process modules and
external applications, and capable of dynamically
combining the external applications with at least one
of digital capturing devices and digital imaging 55

devices.
2. A computer data management system according to

claim 1, wherein the one or more of the external devices and
applications include a printer, a facsimile, and a scanner.

3. A computer data management system according to 60

claim 1, wherein the computer data management system
includes the capability to integrate an image using software

9. A computer data management system according to
claim 7, wherein the server module includes:

enable virtual copy operation means for initiating,
canceling, and resetting said computer data manage­
ment system;

maintain list of available module means for maintaining a
registry containing a list of said input, output, and
process modules that can be used in said computer data
management system, said list being read on startup, and
maintaining another copy of said list in a modules
object accessible by said input, output, client, process
and server modules;

maintain currently active modules means for maintaining
said input, output, and process modules currently being
used for a current computer data management system
copy operation in a program object, and saving the
currently active modules in a process template file; and

maintain complete document information means for
maintaining information regarding a current file being
copied, and saving the information in a document
template file.

so that the image gets seamlessly replicated and transmitted
to at least one of other devices and applications, and via the
Internet.

10. A computer data management system according to
claim 7, wherein the server module includes at least one

65 server module application programmer interface (API).
4. A computer data management system according to

claim 1, wherein the computer data management system
11. A computer data management system according to

claim 10, wherein the at least one server module application

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 89 of 90

US 6,771,381 B1
87

programmer interface (API) comprises the following COM­
based interfaces:

at least one modules object maintammg a first list of
available input, output, and process modules;

at least one program object maintaining a second list of 5

currently selected input, output, and process modules;

at least one document object maintaining information
regarding a current document being copied;

88
copy operation in a program object, and saving the
currently active modules in a process template file; and

maintain complete document information means for
maintaining information regarding a current file being
copied, and saving the information in a document
template file.

14. A computer data management system including at
least one of an electronic image, graphics and document
management system capable of transmitting at least one of

at least one system management method object used to
initiate, cancel, and reset said computer data manage­
ment system;

at least one system management event object used to
provide feedback to the Client Module.

10 an electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including one or
more of external devices and applications responsively
connectable at least one of locally and via the Internet,

12. A computer data management system including at 15

least one of an electronic image, graphics and document
management system capable of transmitting at least one of
an electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including one or
more of external devices and applications responsively 20

connectable at least one of locally and via the Internet,
wherein the system comprises:

(a) single function copy operation linking devices, appli­
cations and the internet including at least one a go
operation, a single function paper copy between 25

devices and software applications, and a single function
paper copy between software applications and devices;

(b) a one step programming method to add paper support
to electronic business processes including at least one
of a one step method of supporting paper within 30

electronic business process application optionally
including legacy systems with no or minimal repro­
gramming of the electronic business process
application, a method of recreating a module oriented
copier in software; 35

(c) a copier interface implemented as software application
including at least one of a virtual copier interface
method of presenting to a user an operation of at least
one of copying files and electronic images, at least one

40
of to and from, at least one of digital imaging devices
and software applications, in a substantially single step,
and presenting users with direct access to at least one
of tutorial and options from a main application window.

13. A computer data management system including a
45

server module comprising:

enable virtual copy operation means for initiating,
canceling, and resetting said computer data manage­
ment system;

maintain list of available module means for maintaining a 50

registry containing a list of said input, output, and
process modules that can be used in said computer data
management system, said list being read on startup, and
maintaining another copy of said list in a modules
object accessible by said input, output, client, process 55

and server modules;

maintain currently active modules means for maintaining
said input, output, and process modules currently being
used for a current computer data management system

comprising:
at least one memory storing a plurality of interface

protocols for interfacing and communicating;
at least one processor responsively connectable to said at

least one memory, and implementing at least one inter­
face protocol as at least one software application for
interfacing and communicating with the plurality of
external destinations including the one or more of the
external devices and applications, wherein said at least
one software application comprises at least one of:
at least one input module managing data comprising at

least one of paper and electronic paper input to the
computer data management system, and managing at
least one imaging device to input the data through at
least one of a scanner and a digital copier, and
managing the electronic paper from at least one
third-party software applications; and

at least one module communicable with said at least
one input, output, client, and process modules and
external applications, and capable of dynamically
combining the external applications with at least one
of digital capturing devices and digital imaging
devices.

15. A computer data management system including at
least one of an electronic image, graphics and document
management system capable of transmitting at least one of
an electronic image, electronic graphics and electronic docu­
ment to a plurality of external destinations including one or
more of external devices and applications responsively
connectable at least one of locally and via the Internet,
wherein the system comprises:

(a) single function copy operation linking devices, appli­
cations and the internet including at least one of a
function paper copy between devices and software
applications, and a function paper copy between soft-
ware applications and devices; and

(b) a copier interface implemented as software application
including at least one of a copier interface method of
presenting to a user an operation of at least one of
copying files and electronic images, at least one of to
and from, at least one of digital imaging devices and
software applications, and presenting users with direct
access to at least one of tutorial and options from an
application window.

* * * * *

Case 2:13-cv-00170-wks Document 18-3 Filed 09/18/13 Page 90 of 90

